ย Consider any two positive real numbers and call it ๐ and ๐. Then consider the function defined asย ย
๐(๐ฅ) = {
๐, 0 โค ๐ฅ < 1 ๐,ย ย ย ย ย ย ย ย ย ย ๐ฅ = 1 Find the ๐(๐,๐) and ๐ฟ(๐,๐) for the partition ๐ = {๐ฅ0,๐ฅ1,โฆ๐ฅ๐} of [0,1]. Also check whether the function is Riemann integrable over [0,1] or not.ย
"Let \\space P=\\{0, \\frac{1}{n},\\frac{2}{n},...,\\frac{r-1}{n}, \\frac{r}{n}...,\\frac{n}{n}=1\\}" be any partition of [0,1]
The rth sub interval of [0,1] "= I_r=[\\frac{r-1}{n},\\frac{r}{n}] ; r= 1,2,...n"
If "\\delta_r" be the length of Ir then, "\\delta = \\frac{r}{n}- \\frac{r-1}{n}= \\frac{1}{n}"
Let Mr and mr be respectively the supremum and the infimum of f in Ir . Since f is increasing on [0,1] we have
"M_r = supf(x) =\\frac{r^3}{n^3}\\\\\nm_r = inff(x) =\\frac{(r-1)^3}{n^3}\\\\\nU(f,p)= \\sum^n_{r=1}M_rdr=\\sum_{r=1}^n \\frac{r^3}{n^3}\\frac{1}{n}=\\frac{1}{4}(1+\\frac{1}{n})^2\\\\\nL(f,p)= \\sum^n_{r=1}m_rdr=\\sum_{r=1}^n \\frac{(r-1)^3}{n^3}\\frac{1}{n}=\\frac{1}{4}(1-\\frac{1}{n})^2"
"\\int_a^{\\bar{b}}f(x)dx = Lim_{n\\to \\infin} U(f,p)= Lim_{n\\to \\infin} \\frac{1}{4}(1+\\frac{1}{n})^2=\\frac{1}{4}\\\\\n\\int_{\\bar{a}}^bf(x)dx = Lim_{n\\to \\infin} L(f,p)= Lim_{n\\to \\infin} \\frac{1}{4}(1-\\frac{1}{n})^2=\\frac{1}{4}\\\\\n\\int_a^{\\bar{b}}f(x)dx=\\int_{\\bar{a}}^bf(x)dx"
Hence the function is Riemann integrable over [0,1]
"\\int_0^1 f(x)dx =\\frac{1}{4}"
Comments
Leave a comment