"\\displaystyle \\textbf{Modeling population growth and decay rates}\\\\ \\textsf{To understand the different models}\\\\ \\textsf{that are used to represent population}\\\\ \\textsf{dynamics, let's start by looking at a}\\\\ \\textsf{general equation for the population growth}\\\\ \\textsf{rate (change in number of individuals}\\\\ \\textsf{in a population over time):}\\\\ \\frac{\\mathrm{d}N}{\\mathrm{d}t} = rN\\\\ \\textsf{is the growth rate of the population}\\\\ \\textsf{in a given instant,}\\, N\\,\\textsf{is population}\\\\ \\textsf{size,}\\,t\\, \\textsf{is time, and} \\\\ r\\, \\textsf{is the per capita rate of increase}\\\\ \\textsf{that is, how quickly the population}\\\\ \\textsf{grows per individual already in the}\\\\ \\textsf{population.}\\\\ \\textsf{If we assume no movement of individuals}\\\\ \\textsf{into or out of the population is,}\\,r\\\\ \\textsf{just a function of birth and death rates.}\\\\"
"\\textbf{Derivation of the solution to the differential equation}\\\\"
"\\dfrac{\\mathrm{d}N}{\\mathrm{d}t} = rN\\\\"
"\\dfrac{\\mathrm{d}N}{N} = r\\, \\mathrm{d}t"
"\\\\ \\int\\,\\dfrac{\\mathrm{d}N}{N} = \\int\\,r\\, \\mathrm{d}t\\\\"
"\\ln(N) = rt + C\\\\ N = Ae^{rt}\\\\"
Therefore this means that the growth and decay of some materials increases exponentially as the time increases
Comments
Leave a comment