Find the interval of convergence of the power series
β
Ξ£ [(β1)^π (π β 2) / π^2 . 2^π] (π₯ β 2)^π
π=3
"\\bigg|\\dfrac{a_{n+1}}{a_n}\\bigg|=\\bigg|\\dfrac{\\dfrac{(n+1-2)}{(n+1)^22^{n+1}}(x-2)^{n+1}}{\\dfrac{(n-2)}{n^22^n}(x-2)^n}\\bigg|"
"=\\dfrac{(n-1)n^2}{2(n-2)(n+1)^2}|x-2|\\to\\dfrac{1}{2}|x-2|\\ as\\ n\\to\\infin"
Radius of convergence: "2."
"x=0"
Use the Limit Comparison Test with
"\\lim\\limits_{n\\to\\infin}\\dfrac{\\dfrac{n-2}{n^2}}{\\dfrac{1}{n}}=1>0"
The garmonic series "\\displaystyle\\sum_{n=3}^{\\infin}\\dfrac{1}{n}" diverges as "p" series with "p=1."
Then the series "\\displaystyle\\sum_{n=3}^{\\infin}\\dfrac{n-2}{n^2}" diverges by the Limit Comparison Test.
"x=4"
Use the Alternating Series Test
"\\lim\\limits_{n\\to\\infin}a_n=\\lim\\limits_{n\\to\\infin}\\dfrac{n-2}{n^2}=0"
"a_{n+1}=\\dfrac{n+1-2}{(n+1)^2}<\\dfrac{n-2}{n^2}=a_n, n\\geq 3"
Then the series "\\displaystyle\\sum_{n=3}^{\\infin}\\dfrac{(-1)^n(n-2)}{n^2}" converges by the Alternating Series Test.
Therefore the interval of convergence is "(0, 4]."
Comments
Leave a comment