∑ n = 1 ∞ ( n 4 + 9 − n 4 − 9 ) \displaystyle\sum_{n=1}^{\infin}(\sqrt{n^4+9}-\sqrt{n^4-9}) n = 1 ∑ ∞ ( n 4 + 9 − n 4 − 9 )
= ∑ n = 1 ∞ ( n 4 + 9 − n 4 − 9 ) n 4 + 9 + n 4 − 9 n 4 + 9 + n 4 − 9 =\displaystyle\sum_{n=1}^{\infin}(\sqrt{n^4+9}-\sqrt{n^4-9})\dfrac{\sqrt{n^4+9}+\sqrt{n^4-9}}{\sqrt{n^4+9}+\sqrt{n^4-9}} = n = 1 ∑ ∞ ( n 4 + 9 − n 4 − 9 ) n 4 + 9 + n 4 − 9 n 4 + 9 + n 4 − 9
= ∑ n = 1 ∞ n 4 + 9 − n 4 + 9 n 4 + 9 + n 4 − 9 =\displaystyle\sum_{n=1}^{\infin}\dfrac{n^4+9-n^4+9}{\sqrt{n^4+9}+\sqrt{n^4-9}} = n = 1 ∑ ∞ n 4 + 9 + n 4 − 9 n 4 + 9 − n 4 + 9
= 18 ∑ n = 1 ∞ 1 n 4 + 9 + n 4 − 9 =18\displaystyle\sum_{n=1}^{\infin}\dfrac{1}{\sqrt{n^4+9}+\sqrt{n^4-9}} = 18 n = 1 ∑ ∞ n 4 + 9 + n 4 − 9 1
Use the Limit Comparison Test with
a n = 1 n 4 + 9 + n 4 − 9 , b n = 1 n 2 a_n=\dfrac{1}{\sqrt{n^4+9}+\sqrt{n^4-9}}, b_n=\dfrac{1}{n^2} a n = n 4 + 9 + n 4 − 9 1 , b n = n 2 1
and obtain
lim n → ∞ a n b n = lim n → ∞ 1 n 4 + 9 + n 4 − 9 1 n 2 \lim\limits_{n\to\infin}\dfrac{a_n}{b_n}=\lim\limits_{n\to\infin}\dfrac{\dfrac{1}{\sqrt{n^4+9}+\sqrt{n^4-9}}}{\dfrac{1}{n^2}} n → ∞ lim b n a n = n → ∞ lim n 2 1 n 4 + 9 + n 4 − 9 1
= lim n → ∞ 1 1 + 9 n 4 + 1 − 9 n 4 = 1 2 > 0 =\lim\limits_{n\to\infin}\dfrac{1}{\sqrt{1+\dfrac{9}{n^4}}+\sqrt{1-\dfrac{9}{n^4}}}=\dfrac{1}{2}>0 = n → ∞ lim 1 + n 4 9 + 1 − n 4 9 1 = 2 1 > 0
Since
∑ n = 1 ∞ b n = ∑ n = 1 ∞ 1 n 2 \displaystyle\sum_{n=1}^{\infin}b_n=\displaystyle\sum_{n=1}^{\infin}\dfrac{1}{n^2} n = 1 ∑ ∞ b n = n = 1 ∑ ∞ n 2 1 is convergent (p p p -series with p = 2 p=2 p = 2 ), the series ∑ n = 1 ∞ 1 n 4 + 9 + n 4 − 9 \displaystyle\sum_{n=1}^{\infin}\dfrac{1}{\sqrt{n^4+9}+\sqrt{n^4-9}} n = 1 ∑ ∞ n 4 + 9 + n 4 − 9 1 converges by the Limit Comparison Test.
Therefore the given series ∑ n = 1 ∞ ( n 4 + 9 − n 4 − 9 ) \displaystyle\sum_{n=1}^{\infin}(\sqrt{n^4+9}-\sqrt{n^4-9}) n = 1 ∑ ∞ ( n 4 + 9 − n 4 − 9 ) is convergent by the Limit Comparison Test.
Comments