Test the following series for convergence
∑
n=1
∞ [✓n^4+9 -✓n^4-9]
"\\sqrt{n^4 +9}-\\sqrt{n^4 -9}\\\\\n\\text{Let} \na _n=\\sqrt{n^4 +9}-\\sqrt{n^4 -9}\\\\\n\\text{Multiplying and dividing }\na _n\n\\text{by }\n\\sqrt{n^4 +9}+\\sqrt{n^4 -9}.\\\\\na_n=\\frac{18}{\\sqrt{n^4 +9}+\\sqrt{n^4 -9}}\\\\\nThen,\\\\\n\\frac{18}{\\sqrt{n^4 +9}+\\sqrt{n^4 -9}}=\n\\frac{18}{n^2(\\sqrt{1 +\\frac{9}{n^4}}+\\sqrt{1-\\frac{9}{n^4}})}\\leq\\frac{18}{n^2}\n\\\\\n\\text{Let} \\\\\nb_n=\\frac{18}{n^2}.\\\\\n\\text{Since, for all n,}\n0\u2264a_n\u2264b_n.\\\\\nand \u2211 _{i=1}^\u221eb_n =\u2211 _{i=1}^\u221e\\frac{18}{n^2}\n(\\text{Converges by p-test})\\\\\n\\text{By comparision test,}\\\\\n\\sum a_n \\text{converges.}"
Comments
Leave a comment