Answer to Question #205070 in Real Analysis for Rajkumar

Question #205070
Test the following series for convergence 

∑
n=1
∞ [✓n^4+9 -✓n^4-9]
1
Expert's answer
2021-06-16T17:22:04-0400

n4+9n49Letan=n4+9n49Multiplying and dividing anby n4+9+n49.an=18n4+9+n49Then,18n4+9+n49=18n2(1+9n4+19n4)18n2Letbn=18n2.Since, for all n,0anbn.andi=1bn=i=118n2(Converges by p-test)By comparision test,anconverges.\sqrt{n^4 +9}-\sqrt{n^4 -9}\\ \text{Let} a _n=\sqrt{n^4 +9}-\sqrt{n^4 -9}\\ \text{Multiplying and dividing } a _n \text{by } \sqrt{n^4 +9}+\sqrt{n^4 -9}.\\ a_n=\frac{18}{\sqrt{n^4 +9}+\sqrt{n^4 -9}}\\ Then,\\ \frac{18}{\sqrt{n^4 +9}+\sqrt{n^4 -9}}= \frac{18}{n^2(\sqrt{1 +\frac{9}{n^4}}+\sqrt{1-\frac{9}{n^4}})}\leq\frac{18}{n^2} \\ \text{Let} \\ b_n=\frac{18}{n^2}.\\ \text{Since, for all n,} 0≤a_n≤b_n.\\ and ∑ _{i=1}^∞b_n =∑ _{i=1}^∞\frac{18}{n^2} (\text{Converges by p-test})\\ \text{By comparision test,}\\ \sum a_n \text{converges.}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment