Prove that the following series is convergent for all 𝑟 ∈ ℝ
Σ (1 + 1/2 + ... + 1/n) (sin (nr) / n).
let:
"a_n=\\frac{\u03a3 ( 1\/n)}{ n}|sin(nr)|"
"b_n=\\frac{\u03a3 ( 1\/n)}{ n}"
"|sin (nr)|\\le 1" , then:
"a_n\\le b_n"
also:
"b_n\\le \\sum (1\/n^2)"
So, since "\\sum (1\/n^2)" converges, "b_n=\\frac{\u03a3 ( 1\/n)}{ n}" converges as well
so, "\\sum b_n" converges
then, "\\sum a_n" converges
so, series "\\sum (1+1\/2+...+1\/n)\\frac{sin(nr)}{n}" converges
Comments
Leave a comment