Question #207312

Prove that the following series is convergent for all 𝑟 ∈ ℝ

Σ (1 + 1/2 + ... + 1/n) (sin (nr) / n).



1
Expert's answer
2022-01-17T16:56:46-0500

let:

an=Σ(1/n)nsin(nr)a_n=\frac{Σ ( 1/n)}{ n}|sin(nr)|


bn=Σ(1/n)nb_n=\frac{Σ ( 1/n)}{ n}


sin(nr)1|sin (nr)|\le 1 , then:

anbna_n\le b_n


also:

bn(1/n2)b_n\le \sum (1/n^2)


So, since (1/n2)\sum (1/n^2) converges, bn=Σ(1/n)nb_n=\frac{Σ ( 1/n)}{ n} converges as well

so, bn\sum b_n converges

then, an\sum a_n converges


so, series (1+1/2+...+1/n)sin(nr)n\sum (1+1/2+...+1/n)\frac{sin(nr)}{n} converges


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS