Find the following limits
lim( sqrt2n+1− Sqrt2n)
n→∞
lim3n^3 −n+8/(4n(n−1)(n−2))
n→∞
b) Consider the sequence (an) = (−1)^n − 2n
Explain whether the sequence is monotone increasing or decreasing, whether it is monotone and if limn→∞(an) = −∞
(a) (i)"lim_{n\\to \\infty} (\\sqrt{2n+1}-\\sqrt{2n})"
Rationalising the given expression-
"= lim_{n\\to \\infty} (\\sqrt{2n+1}-\\sqrt{2n})\\times \\dfrac{ \\sqrt{2n+1}+\\sqrt{2n}}{\\sqrt{2n+1}+\\sqrt{2n}} \n\n\n\n \\\\[9pt]\n\n = lim_{n\\to \\infty} \\dfrac{ (\\sqrt{2n+1})^2-(\\sqrt{2n})^2}{\\sqrt{2n+1}+\\sqrt{2n}} \n\n\n\\\\[9pt]\n =lim _{n\\to \\infty} \\dfrac{1}{\\sqrt{2n+1}+\\sqrt{2n}}"
Applying limits
= 0
(ii) "lim_{n\\to \\infty} \\dfrac{3n^3-n+8}{4n(n-1)(n-2)}"
Now writing it my simplifying-
"=lim_{n\\to \\infty} \\dfrac{3n^3-n+8}{4n(n^2-2n-n+2)} \n\n \\\\[9pt]\n\n =lim_{n\\to \\infty} \\dfrac{3n^3-n+8}{4n^3-12n^2+8n}\n\n\n\n \\\\[9pt]=lim_{n\\to \\infty} \\dfrac{n^3(3-\\frac{1}{n^2}+\\frac{8}{n^3})}{n^3(4-\\frac{12}{n}+\\frac{8}{n^2})}\n\n\n\n \\\\[9pt]=\\dfrac{3-0+0}{4-0+0}=\\dfrac{3}{4}"
(b) Given, sequence
"a_n=(-1)^n-2n"
"a_1=-1-2=-3\\\\\n\n a_2=1-4=-3\\\\\n\n a_3=-1-6=-7\\\\\n\n a_4=-7\\\\\n\n a_5=-1-10=-11\\\\\n\n a_6=1-12=-11\\\\"
"\\Rightarrow <a_n>=-3,-3,-7,-7,-11,-11..."
Here, "a_1\\ge a_2\\ge a_3\\ge a_4\\ge a_5\\ge a_6..."
we know a sequence "<a_n>" is monotonic decreasing if "a_{n+1}\\le a_n \\forall n\\in N"
Hence Given sequence is monotone decreasing.
So "lim_{n\\to \\infty}(a_n)=-\\infty."
Comments
Leave a comment