f(x)= {x^2−5x−5 if x≥−1 x^2+x+1 if x<−1}
is continuous at x = −1
1.)
"x_n={3n^2-2n+1 \\over 2n^2-4 }"
"|x_n-\\frac{3}{2} |=|\\frac{3n^2-2n+1}{2n^2-4}-\\frac{3}{2}|"
"=|\\frac{6n^2-4n+2-(6n^2-12)}{2(2n^2-4)}|"
"|x_n-\\frac{3}{2} |=\\frac{|4n-7|}{|4n^2-8|}=\\frac{2n-7}{2n^2-4}" for "n\\ge 4"
now
"|x_n-\\frac{3}{2} |=\\frac{2n-7}{2n^2-4} <\\frac{2n}{2n^2-4}=\\frac{n}{n^2-2}"
but "n^2-2>\\frac{n^2}{2} \\ for \\ n \\ge4"
thus
"|x_n-\\frac{3}{2} |<\\frac{2n}{n^2}= \\frac{2}{n}<\\epsilon \\ \\ \\ \\ \\ if \\ n> \\frac{2}{\\epsilon}"
thus
"|x_n-\\frac{3}{2} |=\\epsilon \\ \\ \\ \\ \\ \\ \\ \\ \\ for \\ all \\ n \\ge [\\frac{2}{\\epsilon},4]"
2.)
"f(x) = \\begin{cases}\n x^2-5x-5 \\ \\ \\ \\ \\ & x \\ge-1 \\\\\n x^2+x+1 & x\\le-1\n\\end{cases}"
"f(-1)=1"
let choose "\\delta" such that "0<\\delta <1"
thus "|x-1|<\\delta \\ \\ \\ \\ \\ \\ \\implies |x+1|<1"
thus "|x-6|=|x+1-7|<|x+1|+7<8"
and "|x|=|x+1-1|<|x+1|+1<2<8"
now for "0<\\delta <1" , we have "|x-6|<8 \\ , |x|<\\delta"
thus "|f(x)-1|<|x+1|.\\delta < \\epsilon \\ \\ if \\ |x+1|<\\frac{\\epsilon}{\\delta}"
hence choose "\\delta" = min {"\\frac{\\epsilon}{\\delta}," 1 } , we get
"|f(x)-1|<\\epsilon" for all "|x+1|< \\delta"
and "\\delta = min" {"\\frac{\\epsilon}{\\delta}," 1}
Comments
Leave a comment