Answer to Question #191547 in Real Analysis for Amara

Question #191547
  1. Show by using an (ε − N ) argument that lim n->inf 3n^2 −2n+1/2n^2 − 4 =3/2
  2. Use an (ε − δ) argument to show that f : R → R be the function defined by

f(x)= {x^2−5x−5 if x≥−1 x^2+x+1 if x<−1}

is continuous at x = −1


1
Expert's answer
2021-05-12T05:07:29-0400

1.)

xn=3n22n+12n24x_n={3n^2-2n+1 \over 2n^2-4 }

xn32=3n22n+12n2432|x_n-\frac{3}{2} |=|\frac{3n^2-2n+1}{2n^2-4}-\frac{3}{2}|


=6n24n+2(6n212)2(2n24)=|\frac{6n^2-4n+2-(6n^2-12)}{2(2n^2-4)}|


xn32=4n74n28=2n72n24|x_n-\frac{3}{2} |=\frac{|4n-7|}{|4n^2-8|}=\frac{2n-7}{2n^2-4} for n4n\ge 4


now

xn32=2n72n24<2n2n24=nn22|x_n-\frac{3}{2} |=\frac{2n-7}{2n^2-4} <\frac{2n}{2n^2-4}=\frac{n}{n^2-2}


but n22>n22 for n4n^2-2>\frac{n^2}{2} \ for \ n \ge4


thus

xn32<2nn2=2n<ϵ     if n>2ϵ|x_n-\frac{3}{2} |<\frac{2n}{n^2}= \frac{2}{n}<\epsilon \ \ \ \ \ if \ n> \frac{2}{\epsilon}


thus

xn32=ϵ         for all n[2ϵ,4]|x_n-\frac{3}{2} |=\epsilon \ \ \ \ \ \ \ \ \ for \ all \ n \ge [\frac{2}{\epsilon},4]



2.)

f(x)={x25x5     x1x2+x+1x1f(x) = \begin{cases} x^2-5x-5 \ \ \ \ \ & x \ge-1 \\ x^2+x+1 & x\le-1 \end{cases}


f(1)=1f(-1)=1


let choose δ\delta such that 0<δ<10<\delta <1

thus x1<δ          x+1<1|x-1|<\delta \ \ \ \ \ \ \implies |x+1|<1

thus x6=x+17<x+1+7<8|x-6|=|x+1-7|<|x+1|+7<8

and x=x+11<x+1+1<2<8|x|=|x+1-1|<|x+1|+1<2<8


now for 0<δ<10<\delta <1 , we have x6<8 ,x<δ|x-6|<8 \ , |x|<\delta

thus f(x)1<x+1.δ<ϵ  if x+1<ϵδ|f(x)-1|<|x+1|.\delta < \epsilon \ \ if \ |x+1|<\frac{\epsilon}{\delta}


hence choose δ\delta = min {ϵδ,\frac{\epsilon}{\delta}, 1 } , we get


f(x)1<ϵ|f(x)-1|<\epsilon for all x+1<δ|x+1|< \delta

and δ=min\delta = min {ϵδ,\frac{\epsilon}{\delta}, 1}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment