1.)
xn=2n2−43n2−2n+1
∣xn−23∣=∣2n2−43n2−2n+1−23∣
=∣2(2n2−4)6n2−4n+2−(6n2−12)∣
∣xn−23∣=∣4n2−8∣∣4n−7∣=2n2−42n−7 for n≥4
now
∣xn−23∣=2n2−42n−7<2n2−42n=n2−2n
but n2−2>2n2 for n≥4
thus
∣xn−23∣<n22n=n2<ϵ if n>ϵ2
thus
∣xn−23∣=ϵ for all n≥[ϵ2,4]
2.)
f(x)={x2−5x−5 x2+x+1x≥−1x≤−1
f(−1)=1
let choose δ such that 0<δ<1
thus ∣x−1∣<δ ⟹∣x+1∣<1
thus ∣x−6∣=∣x+1−7∣<∣x+1∣+7<8
and ∣x∣=∣x+1−1∣<∣x+1∣+1<2<8
now for 0<δ<1 , we have ∣x−6∣<8 ,∣x∣<δ
thus ∣f(x)−1∣<∣x+1∣.δ<ϵ if ∣x+1∣<δϵ
hence choose δ = min {δϵ, 1 } , we get
∣f(x)−1∣<ϵ for all ∣x+1∣<δ
and δ=min {δϵ, 1}
Comments
Leave a comment