f(x)=x+3x2+8x+15 if, x<−3
=x2−7 if, x≥−3
RHL=limx→−3+(x2−7)=(−3)2−7=2
LHL=limx→−3−x+3x2+8x+15
=limx→−3−(x+3)(x+3)(x+5)
=limx→−3−(x+5)
=−3+5=2
Also f(x) at x=−3=(−3)2−7=9−7=2
We can clearly see that,
LHL=RHL=f(−3) Hence the given function is continuous at x=−3.
Comments
Leave a comment