Test the following series for convergence,
Σ n xn-1 , x > 0
Let us test the series "\\sum_{n=1}^{\\infty} n x^{n-1},\\ x > 0," for convergence using D'Alembert criterion for positive series:
"\\lim\\limits_{n\\to\\infty}\\frac{(n+1)x^n}{nx^{n-1}}=x\\lim\\limits_{n\\to\\infty}\\frac{n+1}{n}=x\\cdot 1=x"
If "0<x<1" then the series is convergent. If "x=1" then the series "\\sum_{n=1}^{\\infty} n" is divergent because "\\lim\\limits_{n\\to\\infty}n=\\infty\\ne 0."
Therefore, the series "\\sum_{n=1}^{\\infty} n x^{n-1},\\ x > 0," is convergent if and only if "0<x<1".
Comments
Leave a comment