Answer to Question #175371 in Real Analysis for Anand

Question #175371

Prove that a strictly decreasing function is always one-one.


1
Expert's answer
2021-04-14T05:44:49-0400

Solution:Proof 1:For a strictly decreasing function if x1<x2 then f(x1)>f(x2).Here no two values of domain can have same values in codomain.One may be less than or greater than other but not equal.So a strictly decreasing function is alwaysoneone.Proof 2:Given:f:R R is strictly decreasing function.To prove:f(x) is oneone.proof:f is strictly decreasing implies:if x<y, then f(x)>f(y)Let us assume that f(a)=f(b)If a<b,then by the definition of strictly increasing f(a)>f(b).Thus it is not possible that a<b when f(a)=f(b).If b<a,then by the definition of strictly increasing f(b)>f(a).Thus it is not possible that b<a when f(a)=f(b).Since a<b is not true and since b<a is not true,a and b then have to be the same :                          a=bBy definition of onetoone function, we have then shown that f is onetoone.Solution: \\Proof~1: \\For~ a ~strictly~ decreasing ~function~ if ~x_1<x_2 ~then ~ f(x_1)>f(x_2). \\Here ~no ~ two ~ values ~ of ~ domain ~ can ~ have ~ same ~values ~ in ~ codomain. \\ One ~may ~ be ~ less ~than ~ or ~ greater ~than ~ other ~but ~ not ~equal .So~ a ~strictly ~ \\ decreasing ~ function ~ is ~always one-one. \\Proof ~ 2: \\Given: f:R\rightarrow~R~ is ~strictly~ decreasing ~function. \\To ~ prove: f(x)~ is ~ one-one. \\proof: f~ is ~strictly ~ decreasing ~ implies: if~ x<y, ~then ~f(x)>f(y) \\Let ~ us ~ assume ~ that~ f(a)=f(b) \\If ~ a<b, then ~by ~ the ~ definition ~ of ~ strictly~ increasing ~f(a)>f(b). \\Thus~ it ~ is ~ not ~possible ~that ~a<b~ when ~ f(a)=f(b). \\If ~ b<a, then ~by ~ the ~ definition ~ of ~ strictly~ increasing ~f(b)>f(a). \\Thus~ it ~ is ~ not ~possible ~that ~b<a~ when ~ f(a)=f(b). \\Since ~ a<b ~ is ~ not ~true ~ and ~ since ~ b<a ~ is ~ not ~ true ,a ~and~ b ~then ~ have ~ to ~be ~\\ the ~ same~: \\~~~~~~~~~~~~~~~~~~~~~~~~~~a=b \\By~ definition ~ of ~one-to-one~ function, ~we~ have ~ then ~ shown ~ that ~f~is ~ \\one-to-one .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment