Show that 1/(n2+n+1) n belongs to N is a Cauchy sequence
Let's show that
"\\forall \\epsilon >0 \\;,\\exists n_0 = n_0(\\epsilon) \\in N : \\forall n,p > n_o \\; \\; |x_{n+p} -x_n| < \\epsilon"
"\\displaystyle |x_{n+p} -x_n|= \\frac{1}{(n+p)^2+n+p+1} - \\frac{1}{n^2+n+1}< \\frac{1}{(n+p)^2+2(n+p)+1} - \\frac{1}{n^2+2n+1} = \\frac{1}{(n+p+1)^2} - \\frac{1}{(n+1)^2}"
for any n and p ("n, p \\in N"): "n+p>n \\Rightarrow (n+p+1)^2 > (n+1)^2 \\Rightarrow \\frac{1}{(n+p+1)^2} < \\frac{1}{(n+1)^2}"
Then, for any "\\epsilon>0" "|x_{n+p} - x_n|< \\epsilon."
Thus, the given sequence is a Cauchy sequence.
Comments
Leave a comment