nLet (a
Let (an) n belongs to N be any sequence. Show that limn--->∞ an= L iff for every ε > 0 there exists some N belongs to N
such that n ≥ N implies an belongs to Nε (L)
Solution:
Let "\\left\\{a_{n}\\right\\}" be a sequence with positive terms such that "\\lim _{n \\rightarrow \\infty} a_{n}=L>0" .
 Let "x" be a real number.
To prove that "\\lim _{n \\rightarrow \\infty} a_{n}^{x}=L^{x}" .
Proof: Let "\\epsilon>0". Note that "L<\\left(L^{x}+\\epsilon\\right)^{1 \/ x}" and "L>\\left(L^{x}-\\epsilon\\right)^{1 \/ x}" .
Since "\\lim _{n \\rightarrow \\infty} a_{n}=L" , there exists some N such that "n \\geq N \\implies a_{n}<\\left(L^{x}+\\epsilon\\right)^{1 \/ x}"
and "a_{n}>\\left(L^{x}-\\epsilon\\right)^{1 \/ x}"
Hence, for "n \\geq N" we have "a_{n}^{x}<L^{x}+\\epsilon"
and "a_{n}^{x}>L^{x}-\\epsilon" . This shows "\\lim _{n \\rightarrow \\infty} a_{n}^{x}=L^{x}" .
Hence, proved.
Comments
Leave a comment