Solve the differential equation:
a) yk - y(k-1) + 2y(k-2) = k² + 5k
b) y(k+2) - 4y(k+1) + yk = 3k +2^k
In LHS yk , y(k-1) and so on is not in multiply but the k part is written in down to y( like yk is not y×k but the k is written in right down of y).
a)
"y_k - y_{k-1} + 2y_{k-2} = k\u00b2 + 5k"
charasteristic equation:
"r^2-r+2=0"
"r=\\frac{1\\pm i \\sqrt 7}{2}"
"y_h=r^k(acos(k\\theta)+bsin(k\\theta))"
"r=\\sqrt{(1\/2)^2+(\\sqrt 7\/2)^2}=\\sqrt 2"
"\\theta=arccos(1\/(2\\sqrt 2))=1.2" rad
"y_h=(\\sqrt 2)^k(acos(1.2k)+bsin(1.2k))"
"y_t=Ak^2+Bk+C"
"Ak^2+Bk+C+A(k-1)^2+B(k-1)+C+2A(k-2)^2+2B(k-2)+2C="
"=k^2+5k"
"4A=1\\implies A=1\/4"
"4B-10A=5\\implies B=1.875"
"4C+9A-5B=0\\implies C=1.78"
"y_k=(\\sqrt 2)^k(acos(1.2k)+bsin(1.2k))+0.25k^2+1.875k+1.78"
b)
"y_{k+2} - 4y_{k+1} + y_k = 3k +2^k"
charasteristic equation:
"r^2-4r+1=0"
"r=2\\pm \\sqrt 3"
"y_h=a(2-\\sqrt 3)^k+b(2+\\sqrt 3)^k"
"y_{t1}=Ak+B"
"A(k+2)+B-4(A(k+1)+B)+Ak+B=3k"
"-2A=3\\implies A=-1.5"
"-2A-2B=0\\implies B=1.5"
"y_{t2}=A2^k"
"A2^{k+2}-4A2^{k+1}+A2^k=2^k"
"4A-8A+A=1"
"A=-1\/3"
"y_k=a(2-\\sqrt 3)^k+b(2+\\sqrt 3)^k-1.5k+1.5-2^k\/3"
Comments
Leave a comment