(2x+y-4)dx+(x-3y+12)dy=0 solve using COEFFICIENT LINEAR IN TWO VARIABLES
"Given\\mathrm{:}\\ \\left(\\mathrm{2}x{}+y-\\mathrm{4}\\right)dx{}{}{}{}\\ \\ +\\ \\left(x-\\mathrm{3}y+\\mathrm{12}\\right)dy\\ \\ =\\ \\ 0 \\\\ \n \\\\ \nwe\\ \\ can\\ \\ rewrite\\ \\ in\\ \\ s\\mathrm{tan}dard\\ \\ form\\ \\ as\\ \\ \\mathrm{:} \\\\ \n \\\\ \n\\left(\\mathrm{2}x{}+y-\\mathrm{4}\\right)dx{}{}{}{}\\ \\ =\\ \\left(-x+\\mathrm{3}y-\\mathrm{12}\\right)dy\\ \\ \\\\ \n \\\\ \n\\frac{dy}{dx}=\\frac{\\left(\\mathrm{2}x+y-\\mathrm{4}\\right)}{\\left(-x+\\mathrm{3}y-\\mathrm{12}\\right)}\\ \\ \\\\ \n \\\\ \nFor\\ \\ coefficient\\ \\ linear\\ \\ in\\ \\ two\\ \\ \\mathrm{var}iables \\\\ \n \\\\ \nFor\\ \\ \\ x=X+h\\ \\ \\ \\ \\ ,\\ \\ \\ y=Y+k\\ \\ \\\\ \n \\\\ \n\\frac{dY}{dX}=\\frac{\\mathrm{2}X+\\mathrm{2}h+Y+k-\\mathrm{4}}{-X-h+\\mathrm{3}Y+\\mathrm{3}k-\\mathrm{12}}\\ \\ \\ \\ =\\ \\ \\frac{\\mathrm{2}X+Y+\\left(\\mathrm{2}h+k-\\mathrm{4}\\right)}{-X+\\mathrm{3}Y+\\mathrm{(3}k-h-\\mathrm{12)}} \\\\ \n \\\\ \nLet\\ \\ \\ \\mathrm{2}h+k-\\mathrm{4}=0\\ \\ ,\\ \\ \\mathrm{3}k-h-\\mathrm{12}=0\\ \\ , \\\\ \n \\\\ \nSolving\\ \\ this\\ \\ \\ two\\ \\ gives\\mathrm{:}\\ \\ h=0,k=\\mathrm{4,} \\\\ \n \\\\ \n\\frac{dY}{dX}=\\frac{\\mathrm{2}X+Y}{-X+\\mathrm{3}Y}\\ \\ \\ \\ \\ \\ \\left(Now\\ \\ \\ it\\ \\ is\\ \\ \\mathrm{hom}ogeneous\\right) \\\\ \n \\\\\n\nwe\\ \\ can\\ \\ rewrite\\ \\ this\\ \\ as\\ \\ \\\\ \n\\left(\\mathrm{3}Y-X\\right)dY{}{}\\ \\ =\\ \\ \\left(\\mathrm{2}X+Y\\right)dX \\\\ \n \\\\ \n\\mathrm{3}YdY\\ \\ -\\ \\ XdY{}{}\\ \\ =\\ \\ \\mathrm{2}XdX\\ \\ +\\ \\ YdX \\\\ \n \\\\ \n\\mathrm{3}YdY\\ \\ -\\ \\ XdY{}{}\\ \\ -\\ \\mathrm{2}XdX\\ \\ -\\ YdX=0 \\\\ \n \\\\ \n\\int{\\mathrm{3}YdY}\\ \\ -\\ \\int{\\mathrm{2}XdX}\\ \\ -\\ d\\left(XY\\right)=C \\\\ \n\\frac{\\mathrm{3}Y^{\\mathrm{2}}}{\\mathrm{2}}-X^{\\mathrm{2}}-XY=C \\\\ \n \\\\ \n\\mathrm{3}Y^{\\mathrm{2}}-\\mathrm{2}XY-\\mathrm{2}X^{\\mathrm{2}}=\\mathrm{2}C \\\\ \n \\\\ \n\\mathrm{Re}place\\ \\ \\ X=x\\ \\ \\ \\ and\\ \\ \\ Y=y-\\mathrm{4} \\\\ \n \\\\ \n\\mathrm{3}{\\left(y-\\mathrm{4}\\right)}^{\\mathrm{2}}-\\mathrm{2}x\\left(y-\\mathrm{4}\\right)-\\mathrm{2}x^{\\mathrm{2}}=\\mathrm{2}C \\\\"
Comments
Leave a comment