Find two power series solutions of the given differential equation about the ordinary point x = 0. y'' - y = 0
"y=\\displaystyle\\sum_{n=0}^{\\infin} a_nx^n"
"y''=\\displaystyle\\sum_{n=2}^{\\infin} n(n-1)a_nx^{n-2}"
"\\displaystyle\\sum_{n=2}^{\\infin} n(n-1)a_nx^{n-2}-\\displaystyle\\sum_{n=0}^{\\infin} a_nx^n=0"
"\\displaystyle\\sum_{n=0}^{\\infin} (n+1)(n+2)a_{n+2}x^{n}-\\displaystyle\\sum_{n=0}^{\\infin} a_nx^n=0"
"\\displaystyle\\sum_{n=0}^{\\infin} [(n+1)(n+2)a_{n+2}-a_n]x^{n}"
"a_{n+2}=\\frac{a_n}{(n+1)(n+2)}"
"a_{2k}=\\frac{a_0}{(2k)!},a_{2k+1}=\\frac{a_1}{(2k+1)!}"
"y(x)=a_0\\displaystyle\\sum_{k=0}^{\\infin}\\frac{x^{2k}}{(2k)!}+a_1\\displaystyle\\sum_{k=0}^{\\infin}\\frac{x^{2k+1}}{(2k+1)!}"
Comments
Leave a comment