1.
k 2 + 1 = 0 k^2+1=0 k 2 + 1 = 0
k = ± i k=\pm i k = ± i
y h = c 1 c o s x + c 2 s i n x y_h=c_1cosx+c_2sinx y h = c 1 cos x + c 2 s in x
y p = A x c o s x + B x s i n x y_p=Axcosx+Bxsinx y p = A x cos x + B x s in x
y p ′ = A c o s x − A x s i n x + B s i n x + B x c o s x = ( A + B x ) c o s x + ( B − A x ) s i n x y'_p=Acosx-Axsinx+Bsinx+Bxcosx=(A+Bx)cosx+(B-Ax)sinx y p ′ = A cos x − A x s in x + B s in x + B x cos x = ( A + B x ) cos x + ( B − A x ) s in x
y p ′ ′ = B c o s x − ( A + B x ) s i n x + ( B − A x ) c o s x − A s i n x y''_p=Bcosx-(A+Bx)sinx+(B-Ax)cosx-Asinx y p ′′ = B cos x − ( A + B x ) s in x + ( B − A x ) cos x − A s in x
B c o s x − ( A + B x ) s i n x + ( B − A x ) c o s x − A s i n x + A x c o s x + B x s i n x = s i n x Bcosx-(A+Bx)sinx+(B-Ax)cosx-Asinx+Axcosx+Bxsinx=sinx B cos x − ( A + B x ) s in x + ( B − A x ) cos x − A s in x + A x cos x + B x s in x = s in x
B = 0 B=0 B = 0
− A − A = 1 -A-A=1 − A − A = 1
A = − 1 / 2 A=-1/2 A = − 1/2
y = y h + y p = c 1 c o s x + c 2 s i n x − x c o s x / 2 y=y_h+y_p=c_1cosx+c_2sinx-xcosx/2 y = y h + y p = c 1 cos x + c 2 s in x − x cos x /2
2.
k 2 + 4 k + 5 = 0 k^2+4k+5=0 k 2 + 4 k + 5 = 0
k = − 4 ± 16 − 20 2 = − 2 ± 2 i k=\frac{-4\pm\sqrt{16-20}}{2}=-2\pm 2i k = 2 − 4 ± 16 − 20 = − 2 ± 2 i
y h = e − 2 x ( c 1 c o s 2 x + c 2 s i n 2 x ) y_h=e^{-2x}(c_1cos2x+c_2sin2x) y h = e − 2 x ( c 1 cos 2 x + c 2 s in 2 x )
y p 1 = A x + B y_{p1}=Ax+B y p 1 = A x + B
4 A + 5 A x + 5 B = 50 x 4A+5Ax+5B=50x 4 A + 5 A x + 5 B = 50 x
A = 10 , B = − 40 / 5 = − 8 A=10,B=-40/5=-8 A = 10 , B = − 40/5 = − 8
y p 1 = 10 x − 8 y_{p1}=10x-8 y p 1 = 10 x − 8
y p 2 = A e 3 x y_{p2}=Ae^{3x} y p 2 = A e 3 x
9 A e 3 x + 12 e 3 x + 5 e 3 x = 13 e 3 x 9Ae^{3x}+12e^{3x}+5e^{3x}=13e^{3x} 9 A e 3 x + 12 e 3 x + 5 e 3 x = 13 e 3 x
A = − 4 / 9 A=-4/9 A = − 4/9
y p 2 = − 4 e 3 x / 9 y_{p2}=-4e^{3x}/9 y p 2 = − 4 e 3 x /9
y = e − 2 x ( c 1 c o s 2 x + c 2 s i n 2 x ) + 10 x − 8 − 4 e 3 x / 9 y=e^{-2x}(c_1cos2x+c_2sin2x)+10x-8-4e^{3x}/9 y = e − 2 x ( c 1 cos 2 x + c 2 s in 2 x ) + 10 x − 8 − 4 e 3 x /9
3.
k 3 + k 2 − 4 k − 4 = 0 k^3+k^2-4k-4=0 k 3 + k 2 − 4 k − 4 = 0
k ( k 2 − 4 ) + k 2 − 4 = 0 k(k^2-4)+k^2-4=0 k ( k 2 − 4 ) + k 2 − 4 = 0
k 1 = − 1 , k 2 = − 2 , k 3 = 2 k_1=-1,k_2=-2,k_3=2 k 1 = − 1 , k 2 = − 2 , k 3 = 2
y h = c 1 e − x + c 1 e − 2 x + c 1 e 2 x y_h=c_1e^{-x}+c_1e^{-2x}+c_1e^{2x} y h = c 1 e − x + c 1 e − 2 x + c 1 e 2 x
y p = A c o s x + B s i n x y_p=Acosx+Bsinx y p = A cos x + B s in x
y p ′ = B c o s x − A s i n x y'_p=Bcosx-Asinx y p ′ = B cos x − A s in x
y p ′ ′ = − B s i n x − A c o s x y''_p=-Bsinx-Acosx y p ′′ = − B s in x − A cos x
y p ′ ′ ′ = − B c o s x + A s i n x y'''_p=-Bcosx+Asinx y p ′′′ = − B cos x + A s in x
− B c o s x + A s i n x − B s i n x − A c o s x − 4 ( B c o s x − A s i n x ) − 4 ( A c o s x + B s i n x ) = -Bcosx+Asinx -Bsinx-Acosx-4(Bcosx-Asinx)-4(Acosx+Bsinx)= − B cos x + A s in x − B s in x − A cos x − 4 ( B cos x − A s in x ) − 4 ( A cos x + B s in x ) =
= 4 s i n x =4 sin x = 4 s in x
− 5 B − 5 A = 0 -5B-5A=0 − 5 B − 5 A = 0
5 A − 5 B = 4 5A-5B=4 5 A − 5 B = 4
10 A = 4 ⟹ A = 2 / 5 , B = − 2 / 5 10A=4\implies A=2/5,B=-2/5 10 A = 4 ⟹ A = 2/5 , B = − 2/5
y = c 1 e − x + c 1 e − 2 x + c 1 e 2 x + 2 ( c o s x − s i n x ) / 5 y=c_1e^{-x}+c_1e^{-2x}+c_1e^{2x}+2(cosx-sinx)/5 y = c 1 e − x + c 1 e − 2 x + c 1 e 2 x + 2 ( cos x − s in x ) /5
4.
k 3 − 1 = 0 k^3-1=0 k 3 − 1 = 0
( k − 1 ) ( k 2 + k + 1 ) = 0 (k-1)(k^2+k+1)=0 ( k − 1 ) ( k 2 + k + 1 ) = 0
k 1 = 1 k_1=1 k 1 = 1
k 2 + k + 1 = 0 k^2+k+1=0 k 2 + k + 1 = 0
k 2 , 3 = − 1 ± i 3 2 k_{2,3}=\frac{-1\pm i\sqrt{3}}{2} k 2 , 3 = 2 − 1 ± i 3
y h = c 1 e x + e − x / 2 ( c 2 c o s ( x 3 / 2 ) + c 3 s i n ( x 3 / 2 ) ) y_h=c_1e^x+e^{-x/2}(c_2cos(x\sqrt 3/2)+c_3sin(x\sqrt 3/2)) y h = c 1 e x + e − x /2 ( c 2 cos ( x 3 /2 ) + c 3 s in ( x 3 /2 ))
y p = A x + B y_p=Ax+B y p = A x + B
− A x − B = x -Ax-B=x − A x − B = x
A = − 1 , B = 0 A=-1,B=0 A = − 1 , B = 0
y = c 1 e x + e − x / 2 ( c 2 c o s ( x 3 / 2 ) + c 3 s i n ( x 3 / 2 ) ) − x y=c_1e^x+e^{-x/2}(c_2cos(x\sqrt 3/2)+c_3sin(x\sqrt 3/2))-x y = c 1 e x + e − x /2 ( c 2 cos ( x 3 /2 ) + c 3 s in ( x 3 /2 )) − x
5.
k 2 − 4 k + 4 = 0 k^2-4k+4=0 k 2 − 4 k + 4 = 0
k 1 , 2 = 2 k_{1,2}=2 k 1 , 2 = 2
y h = c 1 e 2 x + c 2 x e 2 x y_h=c_1e^{2x}+c_2xe^{2x} y h = c 1 e 2 x + c 2 x e 2 x
y p = A e x y_p=Ae^x y p = A e x
A − 4 A + 4 A = 1 A-4A+4A=1 A − 4 A + 4 A = 1
A = 1 A=1 A = 1
y = c 1 e 2 x + c 2 x e 2 x + e x y=c_1e^{2x}+c_2xe^{2x}+e^x y = c 1 e 2 x + c 2 x e 2 x + e x
Comments