Solve the following differential equation:
1. (D²+D)y=sin x
2. (D²+4D+5) y= 50x + 13e^3x
3. (D³+D²-4D-4)y= 4 sin x
4.(D³-D)y=x
5. (D²-4D+4)y=e^x
1.
"k^2+1=0"
"k=\\pm i"
"y_h=c_1cosx+c_2sinx"
"y_p=Axcosx+Bxsinx"
"y'_p=Acosx-Axsinx+Bsinx+Bxcosx=(A+Bx)cosx+(B-Ax)sinx"
"y''_p=Bcosx-(A+Bx)sinx+(B-Ax)cosx-Asinx"
"Bcosx-(A+Bx)sinx+(B-Ax)cosx-Asinx+Axcosx+Bxsinx=sinx"
"B=0"
"-A-A=1"
"A=-1\/2"
"y=y_h+y_p=c_1cosx+c_2sinx-xcosx\/2"
2.
"k^2+4k+5=0"
"k=\\frac{-4\\pm\\sqrt{16-20}}{2}=-2\\pm 2i"
"y_h=e^{-2x}(c_1cos2x+c_2sin2x)"
"y_{p1}=Ax+B"
"4A+5Ax+5B=50x"
"A=10,B=-40\/5=-8"
"y_{p1}=10x-8"
"y_{p2}=Ae^{3x}"
"9Ae^{3x}+12e^{3x}+5e^{3x}=13e^{3x}"
"A=-4\/9"
"y_{p2}=-4e^{3x}\/9"
"y=e^{-2x}(c_1cos2x+c_2sin2x)+10x-8-4e^{3x}\/9"
3.
"k^3+k^2-4k-4=0"
"k(k^2-4)+k^2-4=0"
"k_1=-1,k_2=-2,k_3=2"
"y_h=c_1e^{-x}+c_1e^{-2x}+c_1e^{2x}"
"y_p=Acosx+Bsinx"
"y'_p=Bcosx-Asinx"
"y''_p=-Bsinx-Acosx"
"y'''_p=-Bcosx+Asinx"
"-Bcosx+Asinx -Bsinx-Acosx-4(Bcosx-Asinx)-4(Acosx+Bsinx)="
"=4 sin x"
"-5B-5A=0"
"5A-5B=4"
"10A=4\\implies A=2\/5,B=-2\/5"
"y=c_1e^{-x}+c_1e^{-2x}+c_1e^{2x}+2(cosx-sinx)\/5"
4.
"k^3-1=0"
"(k-1)(k^2+k+1)=0"
"k_1=1"
"k^2+k+1=0"
"k_{2,3}=\\frac{-1\\pm i\\sqrt{3}}{2}"
"y_h=c_1e^x+e^{-x\/2}(c_2cos(x\\sqrt 3\/2)+c_3sin(x\\sqrt 3\/2))"
"y_p=Ax+B"
"-Ax-B=x"
"A=-1,B=0"
"y=c_1e^x+e^{-x\/2}(c_2cos(x\\sqrt 3\/2)+c_3sin(x\\sqrt 3\/2))-x"
5.
"k^2-4k+4=0"
"k_{1,2}=2"
"y_h=c_1e^{2x}+c_2xe^{2x}"
"y_p=Ae^x"
"A-4A+4A=1"
"A=1"
"y=c_1e^{2x}+c_2xe^{2x}+e^x"
Comments
Leave a comment