y''+2y'=0 find two power series of the given differential equation about ordinary point x=0.Compare the series of the solution with the solution of differential obtained using the method section 4.3.Try to explain any differences between the two forms of the solution.
Consider the differential equation,
"y^{\\prime \\prime}-y^{\\prime}=0\\ Let\\ y=\\sum_{n=0}^{\\infty} c_{n} x^{n},"
"then y^{\\prime}=\\sum_{n=1}^{\\infty} n c_{n} x^{n-1} and y^{\\prime \\prime}=\\sum_{n=2}^{\\infty} n(n-1) c_{n} x^{n-2}"
Substituting in the differential equation we get
"\\begin{aligned}\n\n\\sum_{n=2}^{\\infty} & n(n-1) c_{n} x^{n-2}-\\sum_{n=1}^{\\infty} n c_{n} x^{n-1}=0 \\\\\n\n\\Rightarrow & \\sum_{n=2}^{\\infty} \\underbrace{n(n-1) c_{n} x^{n-2}}_{k=n-2}-\\sum_{n=1}^{\\infty} \\underbrace{n c_{n} x^{n-1}}_{k=n-1}=0 \\\\\n\n\\sum_{k=0}^{\\infty}(k+2)(k+1) c_{k+2} x^{k}-\\sum_{k=0}^{\\infty}(k+1) c_{k+1} x^{k}=0 \\\\\n\n& \\sum_{k=0}^{\\infty}\\left[(k+2)(k+1) c_{k+2}-(k+1) c_{k+1}\\right] x^{k}=0\n\n\\end{aligned}"
Compare the coefficients on each side to get,
"\\begin{aligned}\n\n(k+2)(k+1) c_{k+2}-(k+1) c_{k+1} &=0, k=0,1,2, \\ldots \\\\\n\nc_{k+2} &=\\frac{1}{k+2} c_{k+1}, k=0,1,2, \\ldots\n\n\\end{aligned}"
From the relation "c_{k+2}=\\frac{1}{k+2} c_{k+1}, k=0,1,2, \\ldots" get,
"\\begin{aligned}\n\nc_{2} &=\\frac{1}{0+2} c_{0+1} \\\\\n\n&=\\frac{1}{2} c_{1} \\\\\n\nc_{3} &=\\frac{1}{1+2} c_{1+1} \\\\\n\n&=\\frac{1}{3}\\left(\\frac{1}{2} c_{1}\\right) \\\\\n\n&=\\frac{1}{6} c_{1} \\\\\n\nc_{4} &=\\frac{1}{2+2} c_{2+1} \\\\\n\n&=\\frac{1}{4}\\left(\\frac{1}{6} c_{1}\\right) \\\\\n\n&=\\frac{1}{24} c_{1}\n\n\\end{aligned}"
Rewrite the solution "y_{2}" as,
"\\begin{aligned}\n\ny_{2} &=x+\\frac{1}{2 !} x^{2}+\\frac{1}{3 !} x^{3}+\\frac{1}{4 !} x^{4}+\\cdots \\\\\n\n&=-1+1+x+\\frac{1}{2 !} x^{2}+\\frac{1}{3 !} x^{3}+\\frac{1}{4 !} x^{4}+\\cdots \\\\\n\n&=-1+\\left(1+x+\\frac{1}{2 !} x^{2}+\\frac{1}{3 !} x^{3}+\\frac{1}{4 !} x^{4}+\\cdots\\right) \\\\\n\n&=-1+\\sum_{n=0}^{\\infty} \\frac{x^{n}}{n !} \\\\\n\n&=-1+e^{x}\n\n\\end{aligned}"
Therefore, the two solutions are "y_{1}=1, y_{2}=-1+e^{x}"
Finally general solution to the given differential equation is,
"y(x)=c_{0} \\cdot 1+c_{1} \\cdot\\left(e^{x}-1\\right)"
Comments
Leave a comment