(x^3 - x)dy/dx - (3x^2 - 1)y = x^5 - 2x^3 + x , y(1) = 1
Integrating factor
"\\dfrac{1}{x^3-x}y'-\\dfrac{3x^2-1}{(x^3-x)^2}y"
"=\\dfrac{x^3}{(x^2-1)^2}-\\dfrac{2x}{(x^2-1)^2}+\\dfrac{1}{x(x^2-1)^2}"
"(\\dfrac{1}{x^3-x}y)'=\\dfrac{x^4-2x^2+1}{x(x^2-1)^2}"
"(\\dfrac{1}{x^3-x}y)'=\\dfrac{(x^2-1)^2}{x(x^2-1)^2}"
"(\\dfrac{1}{x^3-x}y)'=\\dfrac{1}{x}"
Integrate
"\\dfrac{1}{x^3-x}y=\\ln (|x|)+c_1"
"y=(x^3-x)\\ln (x)+c_1(x^3-x)"
"y(1) = 1"
"1=0, False"
Therefore the given IVP does not have solution.
Comments
Leave a comment