(4x -6y-1) dx + (3x –2y-2) dy = 0
Let us solve the differential equation "(4x -6y-1) dx + (3x -2y-2) dy = 0."
Let us use the transformation "x=u+1,\\ y=v+\\frac{1}{2}." Then we have the equation
"(4u -6v) du + (3u -2v) dv = 0."
Let "u=tv," then "t=\\frac{u}{v}=\\frac{x-1}{y-\\frac{1}2}=\\frac{2x-2}{2y-1}."
It follows that "du=tdv+vdt," and hence
"(4tv -6v) (tdv+vdt) + (3tv \u20132v) dv = 0."
Then after dividing by "v" we get the equation
"(4t -6) (tdv+vdt) + (3t \u20132) dv = 0" or "(4t -6) vdt + (4t^2-3t -2) dv = 0."
it follows that
"\\frac{dv}{v}=-\\frac{(4t -6)dt}{4t^2-3t -2} =-\\frac{1}2\\frac{(8t - 12)dt}{4t^2-3t -2} \n=-\\frac{1}2\\frac{(8t - 3)dt}{4t^2-3t -2} +\\frac{9}2\\frac{dt}{4(t^2-\\frac{3}4t -\\frac{1}2)}\n=-\\frac{1}2\\frac{d(4t^2-3t -2)}{4t^2-3t -2} +\\frac{9}8\\frac{dt}{(t-\\frac{3}8)^2 -\\frac{41}{64}}."
Therefore,
"\\int\\frac{dv}{v}=-\\frac{1}2\\int\\frac{d(4t^2-3t -2)}{4t^2-3t -2} +\\frac{9}8\\int\\frac{dt}{(t-\\frac{3}8)^2 -\\frac{41}{64}}"
We conclude that
"\\ln|v|=-\\frac{1}2\\ln|4t^2-3t-2|+\\frac{9}8\\frac{1}{2\\frac{\\sqrt{41}}{8}}\\ln|\\frac{t-\\frac{3}8-\\frac{\\sqrt{41}}{8}}{t-\\frac{3}8+\\frac{\\sqrt{41}}{8}}|+C,"
and hence the general solution is
"\\ln|y-\\frac{1}2|=-\\frac{1}2\\ln|4(\\frac{2x-2}{2y-1})^2-3(\\frac{2x-2}{2y-1})-2|+\\frac{9}{2\\sqrt{41}}\\ln|\\frac{\\frac{2x-2}{2y-1}-\\frac{3}8-\\frac{\\sqrt{41}}{8}}{\\frac{2x-2}{2y-1}-\\frac{3}8+\\frac{\\sqrt{41}}{8}}|+C."
Comments
Leave a comment