Reducible to homogeneous differential equations or by simple substitution.
1. (2๐ฅ โ 3๐ฆ โ 4)๐๐ฅ โ (3๐ฅ โ 4๐ฆ โ 2)๐๐ฆ = 0
2. (2๐ฅ โ ๐ฆ โ 3)๐๐ฅ โ (๐ฅ + 4๐ฆ + 3)๐๐ฆ = 0
3. (๐ฅ โ ๐ฆ โ 6)๐๐ฆ = (๐ฅ โ ๐ฆ + 2)๐๐ฅ
4. (๐ฅ โ 2๐ฆ + 4)๐๐ฅ + (2๐ฅ โ 4๐ฆ โ 1)๐๐ฆ = 0
5. (๐ฅ + 4๐ฆ + 3)๐๐ฅ = (2๐ฅ โ ๐ฆ โ 3)๐๐ฆ
B. Exact differential equations (include checking for exactness).
1. (๐ค3 + ๐ค๐ง 2 โ ๐ง)๐๐ค + (๐ง 2 + ๐ค2 ๐ง โ ๐ค)๐๐ง = 0
2. (cos 2๐ฆ โ 3๐ฅ 2๐ฆ 2 )๐๐ฅ + (cos 2๐ฆ โ 2๐ฅ sin 2๐ฆ โ 2๐ฅ 3๐ฆ)๐๐ฆ = 0
A.
1.
"x\\to X+h, y\\to Y+k"
"2h-3k-4=0"
"3h-4k-2=0"
"h=k-2"
"2k-4-3k-4=0"
"k=-8,h=-10"
"x=X-10,y=Y-8"
"\\frac{dY}{dX}=\\frac{2X-3Y}{3X-4Y}"
"Y=tX,Y'=t'X+t"
"t'X+t=\\frac{2X-3tX}{3X-4tX}"
"t'X=\\frac{2-3t-3t+4t^2}{3-4t}"
"\\frac{3-4t}{4t^2-6t+2}dt=\\frac{dX}{X}"
"-\\frac{ln(2t^2-3t+1)}{2}=lnX+lnc_1"
"\\frac{1}{2t^2-3t+1}=c_2X^2"
"\\frac{1}{2(Y\/X)^2-3(Y\/X)+1}=c_2X^2"
"2(\\frac{y+8}{x+10})^2-3\\frac{y+8}{x+10}+1=\\frac{c}{(x+10)^2}"
2.
"x\\to X+h, y\\to Y+k"
"2h-k-3=0"
"h+4k+3=0"
"h=5k+6"
"9k+9=0"
"k=-1,h=1"
"x=X+1,y=Y-1"
"\\frac{dY}{dX}=\\frac{2X-Y}{X+4Y}"
"Y=tX,Y'=t'X+t"
"t'X+t=\\frac{2X-tX}{X+4tX}=\\frac{2-t}{1+4t}"
"t'X=\\frac{-4t^2-2t+2}{1+4t}"
"\\frac{1+4t}{-4t^2-2t+2}dt=\\frac{dX}{X}"
"-\\frac{ln(2t^2+t-1)}{2}=lnX+lnc_1"
"\\frac{1}{2t^2+t-1}=c_2X^2"
"\\frac{1}{2(Y\/X)^2+(Y\/X)-1}=c_2X^2"
"2(\\frac{y+1}{x-1})^2+\\frac{y+1}{x-1}-1=\\frac{c}{(x-1)^2}"
3.
"x-y=v"
"1-\\frac{dv}{dx}=\\frac{v+2}{v-6}"
"-\\frac{8}{v-6}=\\frac{dv}{dx}"
"-8x=\\frac{(v-6)^2}{2}+c"
"-8x=\\frac{(x-y-6)^2}{2}+c"
4.
"x-2y=v"
"\\frac{1}{2}(1-\\frac{dv}{dx})=-\\frac{v+4}{2v-1}"
"1+\\frac{2v+8}{v-6}=\\frac{dv}{dx}"
"\\frac{3v+2}{v-6}=\\frac{dv}{dx}"
"dx=\\frac{v-6}{3v+2}dv"
"x=\\frac{3v-20ln(3v+2)}{9}+c"
"x=\\frac{3(x-2y)-20ln(3(x-2y)+2)}{9}+c"
5.
"x\\to X+h, y\\to Y+k"
"2h-k-3=0"
"h+4k+3=0"
"h=5k+6"
"9k+9=0"
"k=-1,h=1"
"x=X+1,y=Y-1"
"\\frac{dY}{dX}=\\frac{X+4Y}{2X-Y}"
"Y=tX,Y'=t'X+t"
"t'X+t=\\frac{X+4tX}{2X-tX}=\\frac{1+4t}{2-t}"
"t'X=\\frac{-t^2+2t+1}{1+4t}"
"\\frac{1+4t}{-t^2+2t+1}dt=\\frac{dX}{X}"
"\\frac{5}{2\\sqrt 2}ln(\\frac{t+\\sqrt 2-1}{t-\\sqrt 2-1})-2ln(t^2-2t-1)=lnX+lnc"
"\\frac{5}{2\\sqrt 2}ln(\\frac{Y\/X+\\sqrt 2-1}{Y\/X-\\sqrt 2-1})-2ln((Y\/X)^2-2Y\/X-1)=ln(cX)"
"\\frac{5}{2\\sqrt 2}ln(\\frac{(y+1)\/(x-1)+\\sqrt 2-1}{(y+1)\/(x-1)-\\sqrt 2-1})-2ln(((y+1)\/(x-1))^2-2(y+1)\/(x-1)-1)="
"=ln(c(x-1))"
B.
1.
"(\ud835\udc64^3 + \ud835\udc64\ud835\udc67 ^2 \u2212 \ud835\udc67)_z=2zw-1"
"(\ud835\udc67 ^2 + \ud835\udc64^2 \ud835\udc67 \u2212 \ud835\udc64)_w=2zw-1"
"F=\\int (\ud835\udc64^3 + \ud835\udc64\ud835\udc67 ^2 \u2212 \ud835\udc67)dw=w^4\/4+w^2z^2\/2-zw+g(z)"
"F_z=w^2z-w+g'(z)=\ud835\udc67 ^2 + \ud835\udc64^2 \ud835\udc67 \u2212 \ud835\udc64"
"g'(z)=\ud835\udc67 ^2"
"g(z)=\\int\ud835\udc67 ^2dz=z^3\/3+c"
"F=w^4\/4+w^2z^2\/2-zw+z^3\/3+c"
"w^4\/4+w^2z^2\/2-zw+z^3\/3+c=0"
2.
"(cos 2\ud835\udc66 \u2212 3\ud835\udc65^ 2\ud835\udc66 ^2 )_y=-2sin2y-6x^2y"
"(cos 2\ud835\udc66 \u2212 2\ud835\udc65 sin 2\ud835\udc66 \u2212 2\ud835\udc65 ^3\ud835\udc66)_x=-2sin2y-6x^2y"
"F=\\int (cos 2\ud835\udc66 \u2212 3\ud835\udc65^ 2\ud835\udc66 ^2 )dx=xcos2y-x^3y^2+g(y)"
"F_y=-2xsin2y-2yx^3+g'(y)=cos 2\ud835\udc66 \u2212 2\ud835\udc65 sin 2\ud835\udc66 \u2212 2\ud835\udc65 ^3\ud835\udc66"
"g'(y)=cos 2\ud835\udc66"
"g(y)=\\intop cos2ydy=sin2y\/2+c"
"F=xcos2y-x^3y^2+sin2y\/2+c"
"xcos2y-x^3y^2+sin2y\/2+c=0"
Comments
Leave a comment