A.
1.
xāX+h,yāY+k
2hā3kā4=0
3hā4kā2=0
h=kā2
2kā4ā3kā4=0
k=ā8,h=ā10
x=Xā10,y=Yā8
dXdYā=3Xā4Y2Xā3Yā
Y=tX,Yā²=tā²X+t
tā²X+t=3Xā4tX2Xā3tXā
tā²X=3ā4t2ā3tā3t+4t2ā
4t2ā6t+23ā4tādt=XdXā
ā2ln(2t2ā3t+1)ā=lnX+lnc1ā
2t2ā3t+11ā=c2āX2
2(Y/X)2ā3(Y/X)+11ā=c2āX2
2(x+10y+8ā)2ā3x+10y+8ā+1=(x+10)2cā
2.
xāX+h,yāY+k
2hākā3=0
h+4k+3=0
h=5k+6
9k+9=0
k=ā1,h=1
x=X+1,y=Yā1
dXdYā=X+4Y2XāYā
Y=tX,Yā²=tā²X+t
tā²X+t=X+4tX2XātXā=1+4t2ātā
tā²X=1+4tā4t2ā2t+2ā
ā4t2ā2t+21+4tādt=XdXā
ā2ln(2t2+tā1)ā=lnX+lnc1ā
2t2+tā11ā=c2āX2
2(Y/X)2+(Y/X)ā11ā=c2āX2
2(xā1y+1ā)2+xā1y+1āā1=(xā1)2cā
3.
xāy=v
1ādxdvā=vā6v+2ā
āvā68ā=dxdvā
ā8x=2(vā6)2ā+c
ā8x=2(xāyā6)2ā+c
4.
xā2y=v
21ā(1ādxdvā)=ā2vā1v+4ā
1+vā62v+8ā=dxdvā
vā63v+2ā=dxdvā
dx=3v+2vā6ādv
x=93vā20ln(3v+2)ā+c
x=93(xā2y)ā20ln(3(xā2y)+2)ā+c
5.
xāX+h,yāY+k
2hākā3=0
h+4k+3=0
h=5k+6
9k+9=0
k=ā1,h=1
x=X+1,y=Yā1
dXdYā=2XāYX+4Yā
Y=tX,Yā²=tā²X+t
tā²X+t=2XātXX+4tXā=2āt1+4tā
tā²X=1+4tāt2+2t+1ā
āt2+2t+11+4tādt=XdXā
22ā5āln(tā2āā1t+2āā1ā)ā2ln(t2ā2tā1)=lnX+lnc
22ā5āln(Y/Xā2āā1Y/X+2āā1ā)ā2ln((Y/X)2ā2Y/Xā1)=ln(cX)
22ā5āln((y+1)/(xā1)ā2āā1(y+1)/(xā1)+2āā1ā)ā2ln(((y+1)/(xā1))2ā2(y+1)/(xā1)ā1)=
=ln(c(xā1))
B.
1.
(w3+wz2āz)zā=2zwā1
(z2+w2zāw)wā=2zwā1
F=ā«(w3+wz2āz)dw=w4/4+w2z2/2āzw+g(z)
Fzā=w2zāw+gā²(z)=z2+w2zāw
gā²(z)=z2
g(z)=ā«z2dz=z3/3+c
F=w4/4+w2z2/2āzw+z3/3+c
w4/4+w2z2/2āzw+z3/3+c=0
2.
(cos2yā3x2y2)yā=ā2sin2yā6x2y
(cos2yā2xsin2yā2x3y)xā=ā2sin2yā6x2y
F=ā«(cos2yā3x2y2)dx=xcos2yāx3y2+g(y)
Fyā=ā2xsin2yā2yx3+gā²(y)=cos2yā2xsin2yā2x3y
gā²(y)=cos2y
g(y)=ā«cos2ydy=sin2y/2+c
F=xcos2yāx3y2+sin2y/2+c
xcos2yāx3y2+sin2y/2+c=0
Comments
Leave a comment