Answer to Question #276056 in Differential Equations for mark

Question #276056

Reducible to homogeneous differential equations or by simple substitution.

1. (2š‘„ āˆ’ 3š‘¦ āˆ’ 4)š‘‘š‘„ āˆ’ (3š‘„ āˆ’ 4š‘¦ āˆ’ 2)š‘‘š‘¦ = 0

2. (2š‘„ āˆ’ š‘¦ āˆ’ 3)š‘‘š‘„ āˆ’ (š‘„ + 4š‘¦ + 3)š‘‘š‘¦ = 0

3. (š‘„ āˆ’ š‘¦ āˆ’ 6)š‘‘š‘¦ = (š‘„ āˆ’ š‘¦ + 2)š‘‘š‘„

4. (š‘„ āˆ’ 2š‘¦ + 4)š‘‘š‘„ + (2š‘„ āˆ’ 4š‘¦ āˆ’ 1)š‘‘š‘¦ = 0

5. (š‘„ + 4š‘¦ + 3)š‘‘š‘„ = (2š‘„ āˆ’ š‘¦ āˆ’ 3)š‘‘š‘¦


B. Exact differential equations (include checking for exactness).

1. (š‘¤3 + š‘¤š‘§ 2 āˆ’ š‘§)š‘‘š‘¤ + (š‘§ 2 + š‘¤2 š‘§ āˆ’ š‘¤)š‘‘š‘§ = 0

2. (cos 2š‘¦ āˆ’ 3š‘„ 2š‘¦ 2 )š‘‘š‘„ + (cos 2š‘¦ āˆ’ 2š‘„ sin 2š‘¦ āˆ’ 2š‘„ 3š‘¦)š‘‘š‘¦ = 0


1
Expert's answer
2021-12-07T09:55:59-0500

A.

1.

x→X+h,y→Y+kx\to X+h, y\to Y+k

2hāˆ’3kāˆ’4=02h-3k-4=0

3hāˆ’4kāˆ’2=03h-4k-2=0

h=kāˆ’2h=k-2

2kāˆ’4āˆ’3kāˆ’4=02k-4-3k-4=0

k=āˆ’8,h=āˆ’10k=-8,h=-10

x=Xāˆ’10,y=Yāˆ’8x=X-10,y=Y-8


dYdX=2Xāˆ’3Y3Xāˆ’4Y\frac{dY}{dX}=\frac{2X-3Y}{3X-4Y}


Y=tX,Y′=t′X+tY=tX,Y'=t'X+t


t′X+t=2Xāˆ’3tX3Xāˆ’4tXt'X+t=\frac{2X-3tX}{3X-4tX}


t′X=2āˆ’3tāˆ’3t+4t23āˆ’4tt'X=\frac{2-3t-3t+4t^2}{3-4t}


3āˆ’4t4t2āˆ’6t+2dt=dXX\frac{3-4t}{4t^2-6t+2}dt=\frac{dX}{X}


āˆ’ln(2t2āˆ’3t+1)2=lnX+lnc1-\frac{ln(2t^2-3t+1)}{2}=lnX+lnc_1


12t2āˆ’3t+1=c2X2\frac{1}{2t^2-3t+1}=c_2X^2


12(Y/X)2āˆ’3(Y/X)+1=c2X2\frac{1}{2(Y/X)^2-3(Y/X)+1}=c_2X^2


2(y+8x+10)2āˆ’3y+8x+10+1=c(x+10)22(\frac{y+8}{x+10})^2-3\frac{y+8}{x+10}+1=\frac{c}{(x+10)^2}


2.

x→X+h,y→Y+kx\to X+h, y\to Y+k

2hāˆ’kāˆ’3=02h-k-3=0

h+4k+3=0h+4k+3=0

h=5k+6h=5k+6

9k+9=09k+9=0

k=āˆ’1,h=1k=-1,h=1

x=X+1,y=Yāˆ’1x=X+1,y=Y-1


dYdX=2Xāˆ’YX+4Y\frac{dY}{dX}=\frac{2X-Y}{X+4Y}


Y=tX,Y′=t′X+tY=tX,Y'=t'X+t


t′X+t=2Xāˆ’tXX+4tX=2āˆ’t1+4tt'X+t=\frac{2X-tX}{X+4tX}=\frac{2-t}{1+4t}


t′X=āˆ’4t2āˆ’2t+21+4tt'X=\frac{-4t^2-2t+2}{1+4t}


1+4tāˆ’4t2āˆ’2t+2dt=dXX\frac{1+4t}{-4t^2-2t+2}dt=\frac{dX}{X}


āˆ’ln(2t2+tāˆ’1)2=lnX+lnc1-\frac{ln(2t^2+t-1)}{2}=lnX+lnc_1


12t2+tāˆ’1=c2X2\frac{1}{2t^2+t-1}=c_2X^2


12(Y/X)2+(Y/X)āˆ’1=c2X2\frac{1}{2(Y/X)^2+(Y/X)-1}=c_2X^2


2(y+1xāˆ’1)2+y+1xāˆ’1āˆ’1=c(xāˆ’1)22(\frac{y+1}{x-1})^2+\frac{y+1}{x-1}-1=\frac{c}{(x-1)^2}


3.

xāˆ’y=vx-y=v


1āˆ’dvdx=v+2vāˆ’61-\frac{dv}{dx}=\frac{v+2}{v-6}


āˆ’8vāˆ’6=dvdx-\frac{8}{v-6}=\frac{dv}{dx}


āˆ’8x=(vāˆ’6)22+c-8x=\frac{(v-6)^2}{2}+c


āˆ’8x=(xāˆ’yāˆ’6)22+c-8x=\frac{(x-y-6)^2}{2}+c


4.

xāˆ’2y=vx-2y=v


12(1āˆ’dvdx)=āˆ’v+42vāˆ’1\frac{1}{2}(1-\frac{dv}{dx})=-\frac{v+4}{2v-1}


1+2v+8vāˆ’6=dvdx1+\frac{2v+8}{v-6}=\frac{dv}{dx}


3v+2vāˆ’6=dvdx\frac{3v+2}{v-6}=\frac{dv}{dx}


dx=vāˆ’63v+2dvdx=\frac{v-6}{3v+2}dv


x=3vāˆ’20ln(3v+2)9+cx=\frac{3v-20ln(3v+2)}{9}+c


x=3(xāˆ’2y)āˆ’20ln(3(xāˆ’2y)+2)9+cx=\frac{3(x-2y)-20ln(3(x-2y)+2)}{9}+c


5.

x→X+h,y→Y+kx\to X+h, y\to Y+k

2hāˆ’kāˆ’3=02h-k-3=0

h+4k+3=0h+4k+3=0


h=5k+6h=5k+6

9k+9=09k+9=0

k=āˆ’1,h=1k=-1,h=1


x=X+1,y=Yāˆ’1x=X+1,y=Y-1


dYdX=X+4Y2Xāˆ’Y\frac{dY}{dX}=\frac{X+4Y}{2X-Y}


Y=tX,Y′=t′X+tY=tX,Y'=t'X+t


t′X+t=X+4tX2Xāˆ’tX=1+4t2āˆ’tt'X+t=\frac{X+4tX}{2X-tX}=\frac{1+4t}{2-t}


t′X=āˆ’t2+2t+11+4tt'X=\frac{-t^2+2t+1}{1+4t}


1+4tāˆ’t2+2t+1dt=dXX\frac{1+4t}{-t^2+2t+1}dt=\frac{dX}{X}


522ln(t+2āˆ’1tāˆ’2āˆ’1)āˆ’2ln(t2āˆ’2tāˆ’1)=lnX+lnc\frac{5}{2\sqrt 2}ln(\frac{t+\sqrt 2-1}{t-\sqrt 2-1})-2ln(t^2-2t-1)=lnX+lnc


522ln(Y/X+2āˆ’1Y/Xāˆ’2āˆ’1)āˆ’2ln((Y/X)2āˆ’2Y/Xāˆ’1)=ln(cX)\frac{5}{2\sqrt 2}ln(\frac{Y/X+\sqrt 2-1}{Y/X-\sqrt 2-1})-2ln((Y/X)^2-2Y/X-1)=ln(cX)


522ln((y+1)/(xāˆ’1)+2āˆ’1(y+1)/(xāˆ’1)āˆ’2āˆ’1)āˆ’2ln(((y+1)/(xāˆ’1))2āˆ’2(y+1)/(xāˆ’1)āˆ’1)=\frac{5}{2\sqrt 2}ln(\frac{(y+1)/(x-1)+\sqrt 2-1}{(y+1)/(x-1)-\sqrt 2-1})-2ln(((y+1)/(x-1))^2-2(y+1)/(x-1)-1)=


=ln(c(xāˆ’1))=ln(c(x-1))


B.

1.

(š‘¤3+š‘¤š‘§2āˆ’š‘§)z=2zwāˆ’1(š‘¤^3 + š‘¤š‘§ ^2 āˆ’ š‘§)_z=2zw-1

(š‘§2+š‘¤2š‘§āˆ’š‘¤)w=2zwāˆ’1(š‘§ ^2 + š‘¤^2 š‘§ āˆ’ š‘¤)_w=2zw-1


F=∫(š‘¤3+š‘¤š‘§2āˆ’š‘§)dw=w4/4+w2z2/2āˆ’zw+g(z)F=\int (š‘¤^3 + š‘¤š‘§ ^2 āˆ’ š‘§)dw=w^4/4+w^2z^2/2-zw+g(z)


Fz=w2zāˆ’w+g′(z)=š‘§2+š‘¤2š‘§āˆ’š‘¤F_z=w^2z-w+g'(z)=š‘§ ^2 + š‘¤^2 š‘§ āˆ’ š‘¤

g′(z)=š‘§2g'(z)=š‘§ ^2

g(z)=āˆ«š‘§2dz=z3/3+cg(z)=\intš‘§ ^2dz=z^3/3+c


F=w4/4+w2z2/2āˆ’zw+z3/3+cF=w^4/4+w^2z^2/2-zw+z^3/3+c

w4/4+w2z2/2āˆ’zw+z3/3+c=0w^4/4+w^2z^2/2-zw+z^3/3+c=0


2.

(cos2š‘¦āˆ’3š‘„2š‘¦2)y=āˆ’2sin2yāˆ’6x2y(cos 2š‘¦ āˆ’ 3š‘„^ 2š‘¦ ^2 )_y=-2sin2y-6x^2y

(cos2š‘¦āˆ’2š‘„sin2š‘¦āˆ’2š‘„3š‘¦)x=āˆ’2sin2yāˆ’6x2y(cos 2š‘¦ āˆ’ 2š‘„ sin 2š‘¦ āˆ’ 2š‘„ ^3š‘¦)_x=-2sin2y-6x^2y


F=∫(cos2š‘¦āˆ’3š‘„2š‘¦2)dx=xcos2yāˆ’x3y2+g(y)F=\int (cos 2š‘¦ āˆ’ 3š‘„^ 2š‘¦ ^2 )dx=xcos2y-x^3y^2+g(y)


Fy=āˆ’2xsin2yāˆ’2yx3+g′(y)=cos2š‘¦āˆ’2š‘„sin2š‘¦āˆ’2š‘„3š‘¦F_y=-2xsin2y-2yx^3+g'(y)=cos 2š‘¦ āˆ’ 2š‘„ sin 2š‘¦ āˆ’ 2š‘„ ^3š‘¦

g′(y)=cos2š‘¦g'(y)=cos 2š‘¦


g(y)=∫cos2ydy=sin2y/2+cg(y)=\intop cos2ydy=sin2y/2+c


F=xcos2yāˆ’x3y2+sin2y/2+cF=xcos2y-x^3y^2+sin2y/2+c

xcos2yāˆ’x3y2+sin2y/2+c=0xcos2y-x^3y^2+sin2y/2+c=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment