y'' - 2y' = 0
This is linear homogeneous of second order with with constant coefficients. For solution we form characteristic algebraic equation
"k^2-2\\cdot k=0"
Or "k\\cdot(k-2)=0"
From it we have two roots:
"k_1=0,k_2=2"
These roots are real and different
Therefore fundamental set of solutions of DE is
"\\{e^{k_1\\cdot x}, e^{k_2\\cdot x}\\}="
"\\{e^{k_1\\cdot x}, e^{k_2\\cdot x}\\}=\\{e^{0\\cdot x}, e^{2\\cdot x} \\}=\\{1, e^{2\\cdot x} \\}"
General solution of DE is a linear combination of fyndamental solutions, thus "y(c_1,c_2,x)=c_1\\cdot y_1(x)+c_2\\cdot y_2(x)=c_1\\cdot 1+c_2\\cdot e^{2\\cdot x}=c_1+c_2\\cdot e^{2\\cdot x},c_1,c_2\\in R -any\\space numbers"
4y'' - 4y' + y = 0
This is linear homogeneous of second order with with constant coefficients. For solution we form characteristic algebraic equation
"4\\cdot k^2-4\\cdot k+1=0"
This is the quadratic equation
It's roots are:
"k_{1,2}=\\frac{4\\pm\\sqrt{4^2-4\\cdot4\\cdot1}}{2\\cdot 4}=\\frac{4\\pm 0}{2\\cdot 4}=\\frac{1}{2}"
Thus we have only one root k=2 but with multiplicity equals to 2.
Then fundamental set of solutions of the DE is"\\{e^{k\\cdot x},x\\cdot e^{k\\cdot x}\\}=\\{e^{\\frac{1}{2}\\cdot x},x\\cdot e^{\\frac{1}{2}\\cdot x}\\}" .
General solution of DE is a linear combination of fyndamental solutions, thus
"y(c_1,c_2,x)=c_1\\cdot y_1(x)+c_2\\cdot y_2(x)=c_1\\cdot e^{\\frac{1}{2}\\cdot x} +c_2\\cdot x\\cdot e^{\\frac{1}{2}\\cdot x},=e^{\\frac{1}{2}\\cdot x}\\cdot (c_1+x\\cdot c_2),\\space c_1,c_2\\in R -any\\space numbers"
Comments
Leave a comment