Solve the following differential equations in series.
x²d²y/dx + xdy/dx +(x²-4)y=0
"y(x)=\\displaystyle\\sum_{n=0}^{\\infin}a_nx^n"
"y'(x)=\\displaystyle\\sum_{n=1}^{\\infin}na_nx^{n-1}"
"y''(x)=\\displaystyle\\sum_{n=2}^{\\infin}na_n(n-1)x^{n-2}"
"x^2\\displaystyle\\sum_{n=2}^{\\infin}na_n(n-1)x^{n-2}+x\\displaystyle\\sum_{n=1}^{\\infin}na_nx^{n-1}+(x^2-4)\\displaystyle\\sum_{n=0}^{\\infin}a_nx^n=0"
"(x^2-4)(a_0+a_1x)+a_1x+\\displaystyle\\sum_{n=2}^{\\infin}(na_n(n-1)+na_n+(x^2-4)a_n)x^n=0"
"\\displaystyle\\sum_{n=2}^{\\infin}na_n(n-1)x^{n}+\\displaystyle\\sum_{n=1}^{\\infin}na_nx^{n}+\\displaystyle\\sum_{n=0}^{\\infin}a_nx^{n+2}-4\\displaystyle\\sum_{n=0}^{\\infin}a_nx^n=0"
"\\displaystyle\\sum_{n=2}^{\\infin}na_n(n-1)x^{n}+\\displaystyle\\sum_{n=1}^{\\infin}na_nx^{n}+\\displaystyle\\sum_{n=2}^{\\infin}a_{n-2}x^{n}-4\\displaystyle\\sum_{n=0}^{\\infin}a_nx^n=0"
"-4a_0-4a_1x+a_1x+\\displaystyle\\sum_{n=2}^{\\infin}(na_n(n-1)+na_n+a_{n-2}-4a_n)x^{n}=0"
"a_0=a_1=0"
"na_n(n-1)+na_n+a_{n-2}-4a_n=0,n\\ge 2"
"a_n=-\\frac{a_{n-2}}{n(n-1)+n-4}=-\\frac{a_{n-2}}{n^2-4},n\\neq 2"
"y(x)=-\\displaystyle\\sum_{n=3}^{\\infin}\\frac{a_{n-2}}{n^2-4}x^n"
Comments
Leave a comment