(D3−6D’D+11D’2D−6D’)z=cos(2x+y)+e2x+y−y 
auxillary equation:
m3−6m+11m−6=m3+5m−6=0 
(m−1)(m2+m+6)=0 
complementary function:
C.F.=f1(y+x)+∑crearx+bry 
where
ar2+br+6=0 
then:
C.F.=f1(y+x)+∑crearx−(6+ar2)y=f1(y+x)+e−6y∑crear(x−ary) 
particular Integral:
P.I.1=D3−6D’D+11D’2D−6D’e2x+y (replace D by 2 and D' by 1)
=8−12+22−6e2x+y=12e2x+y 
 P.I.2=D3−6D’D+11D’2D−6D’cos(2x+y) (replace D2=-a2=-4,DD'=-ab=-2,D'2=-b2=-1)
=−4D+12−11D−6D′cos(2x+y)=−15D+12−6D′cos(2x+y)=−D+0.4D′−0.8cos(2x+y)/15 
D−mD′1F(x,y)=∫F(x,c−mx)dx 
where c is replaced by y+mx after integration
then:
P.I.2=−D+0.4D′−0.8cos(2x+y)/15=−151∫cos(2x+c+0.4x)dx 
=−15⋅2.4sin(2.4x+c)=−36sin(2x+y) 
P.I.3=D3−6D’D+11D’2D−6D’−y=−D31(1−D26D′+D211D′2−d3D′)−1y= 
=−D31(1+D26D′−...)y=−D31(y+D26)=−D31(y+3x2)=−(yx3/3+x5/20) 
z=C.F.+P.I.= 
=f1(y+x)+e−6y∑crear(x−ary)+12e2x+y−36sin(2x+y)−(yx3/3+x5/20) 
                             
Comments