Solve differential equation
(D^3-6D’D+11D’^2D-6D’)z=cos(2x+y)+e^(2x+y)-y
"(D^3-6D\u2019D+11D\u2019^2D-6D\u2019)z=cos(2x+y)+e^{2x+y}-y"
auxillary equation:
"m^3-6m+11m-6=m^3+5m-6=0"
"(m-1)(m^2+m+6)=0"
complementary function:
"C.F.=f_1(y+x)+\\sum c_re^{a_rx+b_ry}"
where
"a_r^2+b_r+6=0"
then:
"C.F.=f_1(y+x)+\\sum c_re^{a_rx-(6+a_r^2)y}=f_1(y+x)+e^{-6y}\\sum c_re^{a_r(x-a_ry)}"
particular Integral:
"P.I._1=\\frac{e^{2x+y}}{D^3-6D\u2019D+11D\u2019^2D-6D\u2019}" (replace D by 2 and D' by 1)
"=\\frac{e^{2x+y}}{8-12+22-6}=\\frac{e^{2x+y}}{12}"
"P.I._2=\\frac{cos(2x+y)}{D^3-6D\u2019D+11D\u2019^2D-6D\u2019}" (replace D2=-a2=-4,DD'=-ab=-2,D'2=-b2=-1)
"=\\frac{cos(2x+y)}{-4D+12-11D-6D'}=\\frac{cos(2x+y)}{-15D+12-6D'}=-\\frac{cos(2x+y)\/15}{D+0.4D'-0.8}"
"\\frac{1}{D-mD'}F(x,y)=\\int F(x,c-mx)dx"
where c is replaced by y+mx after integration
then:
"P.I._2=-\\frac{cos(2x+y)\/15}{D+0.4D'-0.8}=-\\frac{1}{15}\\intop cos(2x+c+0.4x)dx"
"=-\\frac{sin(2.4x+c)}{15\\cdot2.4}=-\\frac{sin(2x+y)}{36}"
"P.I._3=\\frac{-y}{D^3-6D\u2019D+11D\u2019^2D-6D\u2019}=-\\frac{1}{D^3}(1-\\frac{6D'}{D^2}+\\frac{11D'^2}{D^2}-\\frac{D'}{d^3})^{-1}y="
"=-\\frac{1}{D^3}(1+\\frac{6D'}{D^2}-...)y=-\\frac{1}{D^3}(y+\\frac{6}{D^2})=-\\frac{1}{D^3}(y+3x^2)=-(yx^3\/3+x^5\/20)"
"z=C.F.+P.I.="
"=f_1(y+x)+e^{-6y}\\sum c_re^{a_r(x-a_ry)}+\\frac{e^{2x+y}}{12}-\\frac{sin(2x+y)}{36}-(yx^3\/3+x^5\/20)"
Comments
Leave a comment