1.
W(y1,y2,y3,x)=∣∣x22x2x+110x−310∣∣=2∣∣x+11x−31∣∣=2(x+1−x+3)=8=0Therefore, the set {x2,x+1,x−3} is linearly independent on (−∞,∞).
2.
W(y1,y2,x)=∣∣3e2x6e2xe2x2e2x∣∣=6e2x−6e2x=0Therefore, the set {3e2x,e2x} is linearly dependent on (−∞,∞).
3.
W(y1,y2,y3,x)=∣∣x22x2x33x26xx44x312x2∣∣=x2(36x4−24x4)−x3(24x3−8x3)+x4(12x2−6x2)=12x6−16x6+6x6=2x6=0,except at x=0Therefore, the set {x2,x3,x4} is linearly independent on (−∞,∞).
Comments