∇2ψ+[k2+f(ρ)+(ρ21)g(φ)+h(z)]ψ=0
ρ1∂ρ∂[ρ∂ρ∂ψ]+ρ2∂φ2∂2ψ1+∂β2∂ψ+[k2+f(ρ)+(ρ21)g(φ)+h(z)]ψ=0
∂2∂2φ+ρ1∂ρ∂ψ+ρ21∂φ2∂2ψ+∂β2∂2φ+[k2+f(ρ)+(ρ21)g(φ)+h(z)]ψ=0
Method of separation of variable
ψ(ρ,Q,z)=R(ρ)H(φ)Z(β)
R′′Hz+ρ1R′Hz+ρ21RH′′z+RHZ′′+[k2+f(ρ)+(ρ31)g(φ)+h(z)]RHz=0
RR′′+ρ1RR′+ρ21HH′′+ZZ′′+[k2+f(ρ)+(ρ21)g(φ)+h(z)]=0
RR′′+ρ1RR′+ρ21HH′′+[k2+f(ρ)+(ρ21)g(φ)]=z−Z′′−h(z)=1
Then −zz′′−R(ξ)=λ⇒z′′+(λ+R(3))z=0 and RR′′+ρ1RR′+ρ21HH′′+[k2+f(ρ)+(ρ′1)g(φ)]=λ
⇒Rρ2R′′+RρR′+HH′′+(K2ρ2+ρ2f(ρ)+g(φ))=λρ2⇒Rρ2R′′+RρR′+K2ρ2+ρ2f(ρ)−λρ2=H−H′′−g(φ)=l Then H−H′′−g(φ)=l⇒H′′+(l+g(φ))H=0 and Rρ2R′′+RρR′+R2ρ2+ρ2f(ρ)−λρ2=l⇒ρ2R′′+ρR′+(K2ρ2+ρ2f(ρ)−λρ2−ℓ)R=0 set of ODE’s z′′+(λ+R(z))z=0H′′+(l+g(Q))H=0ρ2R′′+ρR1+(K2ρ2+ρ2f(ρ)−λρ2−l)R=0
Comments
Leave a comment