Answer to Question #273508 in Differential Equations for DEBANKUR BISWAS

Question #273508

reduce the equation


∇²ψ + [k² + f(ρ) + (1/ρ²)g(φ) + h(z)]ψ = 0


to a set of ODEs by the method of separation of variables.


1
Expert's answer
2021-12-01T11:06:22-0500

2ψ+[k2+f(ρ)+(1ρ2)g(φ)+h(z)]ψ=0\nabla^{2} \psi+\left[k^{2}+f(\rho)+\left(\frac{1}{\rho^{2}}\right) g(\varphi)+h(z)\right] \psi=0

1ρρ[ρψρ]+1ρ22ψφ2+ψβ2+[k2+f(ρ)+(1ρ2)g(φ)+h(z)]ψ=0\frac{1}{\rho} \frac{\partial}{\partial \rho}\left[\rho \frac{\partial \psi}{\partial \rho}\right]+\frac{1}{\rho^{2} \frac{\partial^{2} \psi}{\partial \varphi^{2}}}+\frac{\partial \psi}{\partial \beta^{2}}+\left[k^{2}+f(\rho)+\left(\frac{1}{\rho^{2}}\right) g(\varphi)+h(z)\right] \psi=0

2φ2+1ρψρ+1ρ22ψφ2+2φβ2+[k2+f(ρ)+(1ρ2)g(φ)+h(z)]ψ=0\frac{\partial^{2} \varphi}{\partial^{2}}+\frac{1}{\rho} \frac{\partial \psi}{\partial \rho}+\frac{1}{\rho^{2}} \frac{\partial^{2} \psi}{\partial \varphi^{2}}+\frac{\partial^{2} \varphi}{\partial \underline{ \beta}^{2}}+\left[k^{2}+f(\rho)+\left(\frac{1}{\rho^{2}}\right) g(\varphi)+h(z)\right] \psi=0

Method of separation of variable

ψ(ρ,Q,z)=R(ρ)H(φ)Z(β)\psi(\rho, Q, z)=R(\rho) H(\varphi) Z(\beta)

RHz+1ρRHz+1ρ2RHz+RHZ+[k2+f(ρ)+(1ρ3)g(φ)+h(z)]RHz=0R^{\prime \prime} H z+\frac{1}{\rho} R^{\prime} H z+\frac{1}{\rho^{2}} R H^{\prime \prime} z+R H Z^{\prime \prime}+ \left[k^{2}+f(\rho)+\left(\frac{1}{\rho^{3}}\right) g(\varphi)+h(z)\right] R H z=0

RR+1ρRR+1ρ2HH+ZZ+[k2+f(ρ)+(1ρ2)g(φ)+h(z)]=0\frac{R^{\prime \prime}}{R}+\frac{1}{\rho} \frac{R^{\prime}}{R}+\frac{1}{\rho^{2}} \frac{H^{\prime \prime}}{H}+\frac{Z^{\prime \prime}}{Z}+\left[k^{2}+f(\rho)+\left(\frac{1}{\rho^{2}}\right) g(\varphi)+h(z)\right]=0

RR+1ρRR+1ρ2HH+[k2+f(ρ)+(1ρ2)g(φ)]=Zzh(z)=1\frac{R^{\prime \prime}}{R}+\frac{1}{\rho} \frac{R^{\prime}}{R}+\frac{1}{\rho^{2}} \frac{H^{\prime \prime}}{H}+\left[k^{2}+f(\rho)+\left(\frac{1}{\rho^{2}}\right) g(\varphi)\right]=\frac{-Z^{\prime \prime}}{z}-h(z) =1

Then zzR(ξ)=λz+(λ+R(3))z=0\quad-\frac{z^{\prime \prime}}{z}-R(\xi)=\lambda \Rightarrow z^{\prime \prime}+(\lambda+R(3)) z=0 and RR+1ρRR+1ρ2HH+[k2+f(ρ)+(1ρ)g(φ)]=λ\frac{R^{\prime \prime}}{R}+\frac{1}{\rho} \frac{R^{\prime}}{R}+\frac{1}{\rho^{2}} \frac{H^{\prime \prime}}{H}+\left[k^{2}+f(\rho)+\left(\frac{1}{\rho^{\prime}}\right) g(\varphi)\right]=\lambda

ρ2RR+ρRR+HH+(K2ρ2+ρ2f(ρ)+g(φ))=λρ2ρ2RR+ρRR+K2ρ2+ρ2f(ρ)λρ2=HHg(φ)=l Then HHg(φ)=lH+(l+g(φ))H=0 and ρ2RR+ρRR+R2ρ2+ρ2f(ρ)λρ2=lρ2R+ρR+(K2ρ2+ρ2f(ρ)λρ2)R=0 set of ODE’s z+(λ+R(z))z=0H+(l+g(Q))H=0ρ2R+ρR1+(K2ρ2+ρ2f(ρ)λρ2l)R=0\begin{aligned} &\Rightarrow \quad \frac{\rho^{2} R^{\prime \prime}}{R}+\frac{\rho R^{\prime}}{R}+\frac{H^{\prime \prime}}{H}+\left(K^{2} \rho^{2}+\rho^{2} f(\rho)+g(\varphi)\right)=\lambda \rho^{2}\\ &\Rightarrow \frac{\rho^{2} R^{\prime \prime}}{R}+\frac{\rho R^{\prime}}{R}+K^{2} \rho^{2}+\rho^{2} f(\rho)-\lambda \rho^{2}=\frac{-H^{\prime \prime}}{H}-g(\varphi)=l \\ &\text { Then } \quad \frac{-H^{\prime \prime}}{H}-g(\varphi)=l \Rightarrow H^{\prime \prime}+(l+g(\varphi)) H=0\\ &\text { and } \frac{\rho^{2} R^{\prime \prime}}{R}+\frac{\rho R^{\prime}}{R}+R^{2} \rho^{2}+\rho^{2} f(\rho)-\lambda \rho^{2}=l\\ &\Rightarrow \quad \rho^{2} R^{\prime \prime}+\rho R^{\prime}+\left(K^{2} \rho^{2}+\rho^{2} f(\rho)-\lambda \rho^{2}-\ell\right) R=0\\ &\text { set of ODE's }\\ &\begin{gathered} z^{\prime \prime}+(\lambda+R(z))z=0 \\ H^{\prime \prime}+(l+g(Q)) H=0 \\ \rho^{2} R^{\prime \prime}+\rho R^{1}+\left(K^{2} \rho^{2}+\rho^{2} f(\rho)-\lambda \rho^{2}-l\right) R=0 \end{gathered}\\ \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment