Find the Wronskian of the following functions and determine whether it is linearly dependent or linearly independent on (-∞,∞).
1.
"\\{\\ln x, \\ln x^2\\}""\\{\\ln x, 2\\ln x\\}, x>0"
"(\\ln x)'=1\/x, (\\ln(x^2))'=2\/x"
"W(\\ln x, \\ln x^2)=\\begin{vmatrix}\n \\ln x & \\ln x^2 \\\\\n 1\/x & 2\/x\n\\end{vmatrix}"
"=(2\/x)\\ln x-(1\/x)\\ln x^2"
"=(2\/x)\\ln x-(2\/x)\\ln x=0"
"\\ln x, \\ln x^2" are linearly dependent on "(0, \\infin)."
2.
"(2+x)'=1,(1-x)'=-1, (3+x^2)'=2x"
"(2+x)''=0,(1-x)''=0, (3+x^2)''=2"
"W(2+x, 1-x,3+x^2)=\\begin{vmatrix}\n 2+x & 1-x & 3+x^2 \\\\\n 1 & -1 & 2x \\\\\n 0 & 0 & 2\n\\end{vmatrix}"
"=-6\\not=0"
"2+x, 1-x, 3+x^2" are linearly independent on "(-\\infin, \\infin)."
Comments
Leave a comment