1.
Corresponding (auxiliary) equation
r 2 + 4 r + 7 = 0 r^2+4r+7=0 r 2 + 4 r + 7 = 0
D = ( 4 ) 2 − 4 ( 1 ) ( 7 ) = − 12 D=(4)^2-4(1)(7)=-12 D = ( 4 ) 2 − 4 ( 1 ) ( 7 ) = − 12
r = − 4 ± − 12 2 ( 1 ) = − 2 ± i 3 r=\dfrac{-4\pm\sqrt{-12}}{2(1)}=-2\pm i\sqrt{3} r = 2 ( 1 ) − 4 ± − 12 = − 2 ± i 3 The general solution of the given differential equation is
y = e − 2 x ( c 1 cos ( 3 x ) + c 2 sin ( 3 x ) ) y=e^{-2x}(c_1\cos(\sqrt{3}x)+c_2\sin(\sqrt{3}x)) y = e − 2 x ( c 1 cos ( 3 x ) + c 2 sin ( 3 x ))
2.
Corresponding (auxiliary) equation
2 r 2 − 7 r + 3 = 0 2r^2-7r+3=0 2 r 2 − 7 r + 3 = 0
D = ( − 7 ) 2 − 4 ( 2 ) ( 3 ) = 25 D=(-7)^2-4(2)(3)=25 D = ( − 7 ) 2 − 4 ( 2 ) ( 3 ) = 25
r = 7 ± 25 2 ( 2 ) = 7 ± 5 4 r=\dfrac{7\pm\sqrt{25}}{2(2)}=\dfrac{7\pm5}{4} r = 2 ( 2 ) 7 ± 25 = 4 7 ± 5
r 1 = 7 + 5 4 = 3 , r 2 = 7 − 5 4 = 1 2 r_1=\dfrac{7+5}{4}=3, r_2=\dfrac{7-5}{4}=\dfrac{1}{2} r 1 = 4 7 + 5 = 3 , r 2 = 4 7 − 5 = 2 1
The general solution of the given differential equation is
y = c 1 e 3 x + c 2 e x / 2 y=c_1e^{3x}+c_2e^{x/2} y = c 1 e 3 x + c 2 e x /2
Comments