1)
x(x+y)dx=−y(x+y)dy=−(x−y)(2x+2y+z)dz 
dx/x+dy/y=0 
lnx+lny=lnc1 
xy=c1 
x+ydx+dy=2(x+y)+z−dz 
 let u=x+y,z=tu , then:
 
z′=t′u+t=−u2u+tu=−2−t  
−2(t+1)dt=du/u 
−ln(t+1)/2=lnu+lnc 
t+11=cu 
ut+1=(x+y)x+yz+1=c2 
F(c1,c2)=F(xy,(x+y)x+yz+1)=0 
2)
x(x2+3y2)dx=−y(3x2+y2)dy=2z(y2−x2)dz 
dx/x+dy/y=dz/z 
lnx+lny=lnz+lnc1 
xy/z=c1 
−x(x2+3y2)y(3x2+y2)=dxdy 
y=tx,y′=t′x+t 
t′x+t=−1+3t2t(3+t2) 
t′x=−1+3t23t+t3+t+3t3 
t3+t1+3t2dt=−x4dx 
ln(t3+t)=−4lnx+lnc2 
x(t3+t)=x((y/x)3+y/x)=c2 
y3/x2+y=c2 
F(c1,c2)=F(xy/z,y3/x2+y)=0 
3)
y+zxdx=−x+yzdy=x2−y2dz 
ydx+xdy+dz=0 
xy+z2/2=c1 
z(x2−y2)xdx+ydy=x2−y2dz 
x2+y2−z2=c2 
F(c1,c2)=F(xy+z2/2,x2+y2−z2)=0 
Comments