Find the solution of Bernoulli Equation
Given:
dy+ydx=(2xy^2)e^xdx
"\\frac{{dy}}{{dx}} + y = 2x{y^2}{e^x} \\Rightarrow y' + y = 2x{y^2}{e^x}"
Substitution:
"y = uv \\Rightarrow y' = u'v + uv'"
Then
"u'v + uv' + uv = 2x{u^2}{v^2}{e^x}"
"u'v + u\\left( {v' + v} \\right) = 2x{u^2}{v^2}{e^x}"
Let
"v' + v = 0 \\Rightarrow \\frac{{dv}}{{dx}} = - v \\Rightarrow \\frac{{dv}}{v} = - dx \\Rightarrow \\ln v = - x \\Rightarrow v = {e^{ - x}}"
Then
"u'{e^{ - x}} = 2x{u^2}{e^{ - 2x}}{e^x}"
"\\frac{{du}}{{dx}} = 2x{u^2} \\Rightarrow \\frac{{du}}{{{u^2}}} = 2xdx \\Rightarrow - \\frac{1}{u} = {x^2} + C \\Rightarrow u = - \\frac{1}{{{x^2} + C}}"
Then
"y = uv = - \\frac{{{e^{ - x}}}}{{{x^2} + C}}"
Answer: "y = - \\frac{{{e^{ - x}}}}{{{x^2} + C}}"
Comments
Leave a comment