Find the solution of Bernoulli Equation
Given:
dy+ydx=(2xy^2)e^xdx
dydx+y=2xy2ex⇒y′+y=2xy2ex\frac{{dy}}{{dx}} + y = 2x{y^2}{e^x} \Rightarrow y' + y = 2x{y^2}{e^x}dxdy+y=2xy2ex⇒y′+y=2xy2ex
Substitution:
y=uv⇒y′=u′v+uv′y = uv \Rightarrow y' = u'v + uv'y=uv⇒y′=u′v+uv′
Then
u′v+uv′+uv=2xu2v2exu'v + uv' + uv = 2x{u^2}{v^2}{e^x}u′v+uv′+uv=2xu2v2ex
u′v+u(v′+v)=2xu2v2exu'v + u\left( {v' + v} \right) = 2x{u^2}{v^2}{e^x}u′v+u(v′+v)=2xu2v2ex
Let
v′+v=0⇒dvdx=−v⇒dvv=−dx⇒lnv=−x⇒v=e−xv' + v = 0 \Rightarrow \frac{{dv}}{{dx}} = - v \Rightarrow \frac{{dv}}{v} = - dx \Rightarrow \ln v = - x \Rightarrow v = {e^{ - x}}v′+v=0⇒dxdv=−v⇒vdv=−dx⇒lnv=−x⇒v=e−x
u′e−x=2xu2e−2xexu'{e^{ - x}} = 2x{u^2}{e^{ - 2x}}{e^x}u′e−x=2xu2e−2xex
dudx=2xu2⇒duu2=2xdx⇒−1u=x2+C⇒u=−1x2+C\frac{{du}}{{dx}} = 2x{u^2} \Rightarrow \frac{{du}}{{{u^2}}} = 2xdx \Rightarrow - \frac{1}{u} = {x^2} + C \Rightarrow u = - \frac{1}{{{x^2} + C}}dxdu=2xu2⇒u2du=2xdx⇒−u1=x2+C⇒u=−x2+C1
y=uv=−e−xx2+Cy = uv = - \frac{{{e^{ - x}}}}{{{x^2} + C}}y=uv=−x2+Ce−x
Answer: y=−e−xx2+Cy = - \frac{{{e^{ - x}}}}{{{x^2} + C}}y=−x2+Ce−x
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment