Answer to Question #277441 in Differential Equations for Kent

Question #277441

Find the solution of Bernoulli Equation


Given:


dy+ydx=(2xy^2)e^xdx



1
Expert's answer
2021-12-09T14:43:14-0500

dydx+y=2xy2exy+y=2xy2ex\frac{{dy}}{{dx}} + y = 2x{y^2}{e^x} \Rightarrow y' + y = 2x{y^2}{e^x}

Substitution:

y=uvy=uv+uvy = uv \Rightarrow y' = u'v + uv'

Then

uv+uv+uv=2xu2v2exu'v + uv' + uv = 2x{u^2}{v^2}{e^x}

uv+u(v+v)=2xu2v2exu'v + u\left( {v' + v} \right) = 2x{u^2}{v^2}{e^x}

Let

v+v=0dvdx=vdvv=dxlnv=xv=exv' + v = 0 \Rightarrow \frac{{dv}}{{dx}} = - v \Rightarrow \frac{{dv}}{v} = - dx \Rightarrow \ln v = - x \Rightarrow v = {e^{ - x}}

Then

uex=2xu2e2xexu'{e^{ - x}} = 2x{u^2}{e^{ - 2x}}{e^x}

dudx=2xu2duu2=2xdx1u=x2+Cu=1x2+C\frac{{du}}{{dx}} = 2x{u^2} \Rightarrow \frac{{du}}{{{u^2}}} = 2xdx \Rightarrow - \frac{1}{u} = {x^2} + C \Rightarrow u = - \frac{1}{{{x^2} + C}}

Then

y=uv=exx2+Cy = uv = - \frac{{{e^{ - x}}}}{{{x^2} + C}}

Answer: y=exx2+Cy = - \frac{{{e^{ - x}}}}{{{x^2} + C}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment