Find the solution of Bernoulli Equation
Given:
2xdy+y(y^2lnx-1)dx=0
"2xdy+y(y^2lnx-1)dx=0\\\\\n2xdy+(y^3lnx-y)dx=0"
Multiply by "\\frac{1}{y^3}" both sides, we get
"\\frac{2xdy}{y^3}+(lnx-\\frac{1}{y^2})dx=0"
"\\begin{aligned}\n&\\text { Equation in total differentials } M(x, y) \\mathrm{d} y+N(x, y) \\mathrm{d} x=0 \\\\\n&\\text { where } M(x, y)=\\frac{2 x}{y^{3}} \\text { and } N(x, y)=\\ln (x)-\\frac{1}{y^{2}} \\\\\n&\\text { Check for full differential: } M(x, y)_{x}^{\\prime}=N(x, y)_{y}^{\\prime}=\\frac{2}{y^{3}} \\\\\n&\\text { Find } F(x, y): \\mathrm{d} F(x, y)=F_{y}^{\\prime} \\mathrm{d} y+F_{x}^{\\prime} \\mathrm{d} x \\\\\n&F(x, y)=\\int N(x, y) \\mathrm{d} x=\\int \\ln (x)-\\frac{1}{y^{2}} \\mathrm{~d} x=x \\ln (x)-\\frac{x}{y^{2}}-x+C_{y} \\\\\n&\\qquad\\left(x \\ln (x)-\\frac{x}{y^{2}}-x\\right)_{y}^{\\prime}=\\frac{2 x}{y^{3}} \\\\\n&\\qquad \\begin{array}{c}\nC_{y}=\\int M(x, y)-\\left(x \\ln (x)-\\frac{x}{y^{2}}-x\\right)_{y}^{\\prime} \\mathrm{d} y=\\int 0 \\mathrm{~d} y=0 \\\\\nF(x,y)= x \\ln (x)-\\frac{x}{y^{2}}-x+C_{y}=x \\ln (x)-\\frac{x}{y^{2}}-x\n\\end{array}\n\\end{aligned}"
"x \\ln (x)-\\frac{x}{y^{2}}-x=C"
Comments
Leave a comment