(D^2 + 4) y = 4 sec 2x csc 2x
The corresponding homogeneous equation is
Auxiliary equation
"r_1=2i, r_2=-2i"
The general solution of the homogeneous equation is
Variation of Parameters
Let
"c_1'\\cos(2x)+c_2'\\sin(2x)=0"Then
"y''=-2c_1'\\sin(2x)-4c_1\\cos(2x)"
"+2c_2'\\cos(2x)-4c_2\\sin(2x)"
Substitute
"+2c_2'\\cos(2x)-4c_2\\sin(2x)"
"+4c_1\\cos(2x)+4c_2\\sin(2x)"
"=4\\sec(2x)\\csc(2x)"
"\\begin{cases}\n c_1'\\cos(2x)+c_2'\\sin(2x)=0\\\\\n\\\\\n -2c_1'\\sin(2x)+2c_2'\\cos(2x)=4\\sec(2x)\\csc(2x)\n\\end{cases}"
"c_2'=-\\dfrac{\\cos(2x)}{\\sin(2x)}c_1'"
"-c_1'\\sin(2x)-\\dfrac{\\cos^2(2x)}{\\sin(2x)}c_1'=\\dfrac{2}{\\sin(2x)\\cos(2x)}"
"c_1'=-\\dfrac{2}{\\cos(2x)}"
Integrate
"\\int \\dfrac{2}{\\cos(2x)}dx=\\int \\dfrac{2\\cos(2x)}{\\cos^2(2x)}dx"
"=\\int \\dfrac{2\\cos(2x)}{1-\\sin^2(2x)}dx"
"=\\int \\dfrac{\\cos(2x)}{1-\\sin(2x)}dx+\\int \\dfrac{\\cos(2x)}{1+\\sin(2x)}dx"
"=-\\dfrac{1}{2}\\int \\dfrac{d(1-\\sin(2x))}{1-\\sin(2x)}dx+\\dfrac{1}{2}\\int \\dfrac{d(1+\\sin(2x))}{1+\\sin(2x)}dx"
"=-\\dfrac{1}{2}\\ln(|1-\\sin(2x)|)+\\dfrac{1}{2}\\ln(|1+\\sin(2x)|)+C_3"
"=\\dfrac{1}{2}\\ln\\dfrac{(1+\\sin(2x))^2}{1-\\sin^2(2x)}+C_3"
"=\\ln(1+\\sin(2x))-\\ln(|\\cos(2x)|)+C_3"
"c_1=-\\ln(1+\\sin(2x))+\\ln(|\\cos(2x)|)-C_3"
"c_2'=\\dfrac{2}{\\sin(2x)}"
Integrate
"\\int \\dfrac{2}{\\sin(2x)}dx=\\int \\dfrac{2\\sin(2x)}{\\sin^2(2x)}dx"
"=\\int \\dfrac{2\\sin(2x)}{1-\\cos^2(2x)}dx"
"=\\int \\dfrac{\\sin(2x)}{1-\\cos(2x)}dx+\\int \\dfrac{\\sin(2x)}{1+\\cos(2x)}dx"
"=\\dfrac{1}{2}\\int \\dfrac{d(1-\\cos(2x))}{1-\\cos(2x)}dx-\\dfrac{1}{2}\\int \\dfrac{d(1+\\cos(2x))}{1+\\cos(2x)}dx"
"=\\dfrac{1}{2}\\ln(|1-\\cos(2x)|)-\\dfrac{1}{2}\\ln(|1+\\cos(2x)|)+C_4"
"=-\\dfrac{1}{2}\\ln\\dfrac{(1+\\cos(2x))^2}{1-\\cos^2(2x)}+C_4"
"=-\\ln(1+\\cos(2x))+\\ln(|\\sin(2x)|)+C_4"
"c_2=-\\ln(1+\\cos(2x))+\\ln(|\\sin(2x)|)+C_4"
The general solution of the homogeneous equation is
"+\\bigg(-\\ln(1+\\sin(2x))+\\ln(|\\cos(2x)|)\\bigg)\\cos(2x)"
"+\\bigg(-\\ln(1+\\cos(2x))+\\ln(|\\sin(2x)|)\\bigg)\\sin(2x)"
Comments
Leave a comment