The corresponding homogeneous equation is
( D 2 + 4 ) y = 0 (D^2+4)y=0 ( D 2 + 4 ) y = 0 Auxiliary equation
r 2 + 4 = 0 r^2+4=0 r 2 + 4 = 0
r 1 = 2 i , r 2 = − 2 i r_1=2i, r_2=-2i r 1 = 2 i , r 2 = − 2 i The general solution of the homogeneous equation is
y h = c 1 cos ( 2 x ) + c 2 sin ( 2 x ) y_h=c_1\cos(2x)+c_2\sin(2x) y h = c 1 cos ( 2 x ) + c 2 sin ( 2 x ) Variation of Parameters
y ′ = c 1 ′ cos ( 2 x ) − 2 c 1 sin ( 2 x ) + c 2 ′ sin ( 2 x ) + 2 c 2 cos ( 2 x ) y'=c_1'\cos(2x)-2c_1\sin(2x)+c_2'\sin(2x)+2c_2\cos(2x) y ′ = c 1 ′ cos ( 2 x ) − 2 c 1 sin ( 2 x ) + c 2 ′ sin ( 2 x ) + 2 c 2 cos ( 2 x ) Let
c 1 ′ cos ( 2 x ) + c 2 ′ sin ( 2 x ) = 0 c_1'\cos(2x)+c_2'\sin(2x)=0 c 1 ′ cos ( 2 x ) + c 2 ′ sin ( 2 x ) = 0 Then
y ′ = − 2 c 1 sin ( 2 x ) + 2 c 2 cos ( 2 x ) y'=-2c_1\sin(2x)+2c_2\cos(2x) y ′ = − 2 c 1 sin ( 2 x ) + 2 c 2 cos ( 2 x )
y ′ ′ = − 2 c 1 ′ sin ( 2 x ) − 4 c 1 cos ( 2 x ) y''=-2c_1'\sin(2x)-4c_1\cos(2x) y ′′ = − 2 c 1 ′ sin ( 2 x ) − 4 c 1 cos ( 2 x )
+ 2 c 2 ′ cos ( 2 x ) − 4 c 2 sin ( 2 x ) +2c_2'\cos(2x)-4c_2\sin(2x) + 2 c 2 ′ cos ( 2 x ) − 4 c 2 sin ( 2 x ) Substitute
− 2 c 1 ′ sin ( 2 x ) − 4 c 1 cos ( 2 x ) -2c_1'\sin(2x)-4c_1\cos(2x) − 2 c 1 ′ sin ( 2 x ) − 4 c 1 cos ( 2 x )
+ 2 c 2 ′ cos ( 2 x ) − 4 c 2 sin ( 2 x ) +2c_2'\cos(2x)-4c_2\sin(2x) + 2 c 2 ′ cos ( 2 x ) − 4 c 2 sin ( 2 x )
+ 4 c 1 cos ( 2 x ) + 4 c 2 sin ( 2 x ) +4c_1\cos(2x)+4c_2\sin(2x) + 4 c 1 cos ( 2 x ) + 4 c 2 sin ( 2 x )
= 4 sec ( 2 x ) csc ( 2 x ) =4\sec(2x)\csc(2x) = 4 sec ( 2 x ) csc ( 2 x )
{ c 1 ′ cos ( 2 x ) + c 2 ′ sin ( 2 x ) = 0 − 2 c 1 ′ sin ( 2 x ) + 2 c 2 ′ cos ( 2 x ) = 4 sec ( 2 x ) csc ( 2 x ) \begin{cases}
c_1'\cos(2x)+c_2'\sin(2x)=0\\
\\
-2c_1'\sin(2x)+2c_2'\cos(2x)=4\sec(2x)\csc(2x)
\end{cases} ⎩ ⎨ ⎧ c 1 ′ cos ( 2 x ) + c 2 ′ sin ( 2 x ) = 0 − 2 c 1 ′ sin ( 2 x ) + 2 c 2 ′ cos ( 2 x ) = 4 sec ( 2 x ) csc ( 2 x )
c 2 ′ = − cos ( 2 x ) sin ( 2 x ) c 1 ′ c_2'=-\dfrac{\cos(2x)}{\sin(2x)}c_1' c 2 ′ = − sin ( 2 x ) cos ( 2 x ) c 1 ′
− c 1 ′ sin ( 2 x ) − cos 2 ( 2 x ) sin ( 2 x ) c 1 ′ = 2 sin ( 2 x ) cos ( 2 x ) -c_1'\sin(2x)-\dfrac{\cos^2(2x)}{\sin(2x)}c_1'=\dfrac{2}{\sin(2x)\cos(2x)} − c 1 ′ sin ( 2 x ) − sin ( 2 x ) cos 2 ( 2 x ) c 1 ′ = sin ( 2 x ) cos ( 2 x ) 2
c 1 ′ = − 2 cos ( 2 x ) c_1'=-\dfrac{2}{\cos(2x)} c 1 ′ = − cos ( 2 x ) 2 Integrate
c 1 = − ∫ 2 cos ( 2 x ) d x c_1=-\int \dfrac{2}{\cos(2x)}dx c 1 = − ∫ cos ( 2 x ) 2 d x
∫ 2 cos ( 2 x ) d x = ∫ 2 cos ( 2 x ) cos 2 ( 2 x ) d x \int \dfrac{2}{\cos(2x)}dx=\int \dfrac{2\cos(2x)}{\cos^2(2x)}dx ∫ cos ( 2 x ) 2 d x = ∫ cos 2 ( 2 x ) 2 cos ( 2 x ) d x
= ∫ 2 cos ( 2 x ) 1 − sin 2 ( 2 x ) d x =\int \dfrac{2\cos(2x)}{1-\sin^2(2x)}dx = ∫ 1 − sin 2 ( 2 x ) 2 cos ( 2 x ) d x
= ∫ cos ( 2 x ) 1 − sin ( 2 x ) d x + ∫ cos ( 2 x ) 1 + sin ( 2 x ) d x =\int \dfrac{\cos(2x)}{1-\sin(2x)}dx+\int \dfrac{\cos(2x)}{1+\sin(2x)}dx = ∫ 1 − sin ( 2 x ) cos ( 2 x ) d x + ∫ 1 + sin ( 2 x ) cos ( 2 x ) d x
= − 1 2 ∫ d ( 1 − sin ( 2 x ) ) 1 − sin ( 2 x ) d x + 1 2 ∫ d ( 1 + sin ( 2 x ) ) 1 + sin ( 2 x ) d x =-\dfrac{1}{2}\int \dfrac{d(1-\sin(2x))}{1-\sin(2x)}dx+\dfrac{1}{2}\int \dfrac{d(1+\sin(2x))}{1+\sin(2x)}dx = − 2 1 ∫ 1 − sin ( 2 x ) d ( 1 − sin ( 2 x )) d x + 2 1 ∫ 1 + sin ( 2 x ) d ( 1 + sin ( 2 x )) d x
= − 1 2 ln ( ∣ 1 − sin ( 2 x ) ∣ ) + 1 2 ln ( ∣ 1 + sin ( 2 x ) ∣ ) + C 3 =-\dfrac{1}{2}\ln(|1-\sin(2x)|)+\dfrac{1}{2}\ln(|1+\sin(2x)|)+C_3 = − 2 1 ln ( ∣1 − sin ( 2 x ) ∣ ) + 2 1 ln ( ∣1 + sin ( 2 x ) ∣ ) + C 3
= 1 2 ln ( 1 + sin ( 2 x ) ) 2 1 − sin 2 ( 2 x ) + C 3 =\dfrac{1}{2}\ln\dfrac{(1+\sin(2x))^2}{1-\sin^2(2x)}+C_3 = 2 1 ln 1 − sin 2 ( 2 x ) ( 1 + sin ( 2 x ) ) 2 + C 3
= ln ( 1 + sin ( 2 x ) ) − ln ( ∣ cos ( 2 x ) ∣ ) + C 3 =\ln(1+\sin(2x))-\ln(|\cos(2x)|)+C_3 = ln ( 1 + sin ( 2 x )) − ln ( ∣ cos ( 2 x ) ∣ ) + C 3
c 1 = − ln ( 1 + sin ( 2 x ) ) + ln ( ∣ cos ( 2 x ) ∣ ) − C 3 c_1=-\ln(1+\sin(2x))+\ln(|\cos(2x)|)-C_3 c 1 = − ln ( 1 + sin ( 2 x )) + ln ( ∣ cos ( 2 x ) ∣ ) − C 3
c 2 ′ = 2 sin ( 2 x ) c_2'=\dfrac{2}{\sin(2x)} c 2 ′ = sin ( 2 x ) 2 Integrate
c 2 = ∫ 2 sin ( 2 x ) d x c_2=\int \dfrac{2}{\sin(2x)}dx c 2 = ∫ sin ( 2 x ) 2 d x
∫ 2 sin ( 2 x ) d x = ∫ 2 sin ( 2 x ) sin 2 ( 2 x ) d x \int \dfrac{2}{\sin(2x)}dx=\int \dfrac{2\sin(2x)}{\sin^2(2x)}dx ∫ sin ( 2 x ) 2 d x = ∫ sin 2 ( 2 x ) 2 sin ( 2 x ) d x
= ∫ 2 sin ( 2 x ) 1 − cos 2 ( 2 x ) d x =\int \dfrac{2\sin(2x)}{1-\cos^2(2x)}dx = ∫ 1 − cos 2 ( 2 x ) 2 sin ( 2 x ) d x
= ∫ sin ( 2 x ) 1 − cos ( 2 x ) d x + ∫ sin ( 2 x ) 1 + cos ( 2 x ) d x =\int \dfrac{\sin(2x)}{1-\cos(2x)}dx+\int \dfrac{\sin(2x)}{1+\cos(2x)}dx = ∫ 1 − cos ( 2 x ) sin ( 2 x ) d x + ∫ 1 + cos ( 2 x ) sin ( 2 x ) d x
= 1 2 ∫ d ( 1 − cos ( 2 x ) ) 1 − cos ( 2 x ) d x − 1 2 ∫ d ( 1 + cos ( 2 x ) ) 1 + cos ( 2 x ) d x =\dfrac{1}{2}\int \dfrac{d(1-\cos(2x))}{1-\cos(2x)}dx-\dfrac{1}{2}\int \dfrac{d(1+\cos(2x))}{1+\cos(2x)}dx = 2 1 ∫ 1 − cos ( 2 x ) d ( 1 − cos ( 2 x )) d x − 2 1 ∫ 1 + cos ( 2 x ) d ( 1 + cos ( 2 x )) d x
= 1 2 ln ( ∣ 1 − cos ( 2 x ) ∣ ) − 1 2 ln ( ∣ 1 + cos ( 2 x ) ∣ ) + C 4 =\dfrac{1}{2}\ln(|1-\cos(2x)|)-\dfrac{1}{2}\ln(|1+\cos(2x)|)+C_4 = 2 1 ln ( ∣1 − cos ( 2 x ) ∣ ) − 2 1 ln ( ∣1 + cos ( 2 x ) ∣ ) + C 4
= − 1 2 ln ( 1 + cos ( 2 x ) ) 2 1 − cos 2 ( 2 x ) + C 4 =-\dfrac{1}{2}\ln\dfrac{(1+\cos(2x))^2}{1-\cos^2(2x)}+C_4 = − 2 1 ln 1 − cos 2 ( 2 x ) ( 1 + cos ( 2 x ) ) 2 + C 4
= − ln ( 1 + cos ( 2 x ) ) + ln ( ∣ sin ( 2 x ) ∣ ) + C 4 =-\ln(1+\cos(2x))+\ln(|\sin(2x)|)+C_4 = − ln ( 1 + cos ( 2 x )) + ln ( ∣ sin ( 2 x ) ∣ ) + C 4
c 2 = − ln ( 1 + cos ( 2 x ) ) + ln ( ∣ sin ( 2 x ) ∣ ) + C 4 c_2=-\ln(1+\cos(2x))+\ln(|\sin(2x)|)+C_4 c 2 = − ln ( 1 + cos ( 2 x )) + ln ( ∣ sin ( 2 x ) ∣ ) + C 4
The general solution of the homogeneous equation is
y h = c 5 cos ( 2 x ) + c 6 sin ( 2 x ) y_h=c_5\cos(2x)+c_6\sin(2x) y h = c 5 cos ( 2 x ) + c 6 sin ( 2 x )
+ ( − ln ( 1 + sin ( 2 x ) ) + ln ( ∣ cos ( 2 x ) ∣ ) ) cos ( 2 x ) +\bigg(-\ln(1+\sin(2x))+\ln(|\cos(2x)|)\bigg)\cos(2x) + ( − ln ( 1 + sin ( 2 x )) + ln ( ∣ cos ( 2 x ) ∣ ) ) cos ( 2 x )
+ ( − ln ( 1 + cos ( 2 x ) ) + ln ( ∣ sin ( 2 x ) ∣ ) ) sin ( 2 x ) +\bigg(-\ln(1+\cos(2x))+\ln(|\sin(2x)|)\bigg)\sin(2x) + ( − ln ( 1 + cos ( 2 x )) + ln ( ∣ sin ( 2 x ) ∣ ) ) sin ( 2 x )
Comments