wave equation:
ytt=λ2yxx 
solution:
y(x,t)=∑sin(nπx/l)(ancos(λπnt/l)+bnsin(λπnt/l)) 
where
an=l2∫0lf(x)sin(nπx/l)dx 
bn=λnπ2∫0lg(x)sin(nπx/l)dx 
we have:
f(x)=y(x,0)=4λx(l−x)/l2 
 g(x)=yt(x,0)=0 
y(0,t)=y(l,t)=yt(0,t)=yt(l,t)=0 
then:
bn=0 
an=l2∫0l(4λx(l−x)/l2)sin(nπx/l)dx=−l38λπ3n3l3(πnsin(πn)+2cos(πn)−2)= 
=−π3n38λ(πnsin(πn)+2cos(πn)−2) 
y(x,t)=−∑π3n38λ(πnsin(πn)+2cos(πn)−2)sin(nπx/l)cos(λπnt/l) 
Comments