A string of length l has it's ends x=0 and x=l fixed. It is released from its rest in position y=[4 lamda x(l-x)]/l². Find an expression of the displacement of the string at any subsequent time.
wave equation:
"y_{tt}=\\lambda^2 y_{xx}"
solution:
"y(x,t)=\\sum sin(n\\pi x\/l)(a_ncos(\\lambda \\pi nt\/l)+b_n sin(\\lambda \\pi nt\/l))"
where
"a_n=\\frac{2}{l}\\int^l_0 f(x) sin(n\\pi x\/l)dx"
"b_n=\\frac{2}{\\lambda n \\pi}\\int^l_0 g(x) sin(n\\pi x\/l)dx"
we have:
"f(x)=y(x,0)=4\\lambda x(l-x)\/l^2"
"g(x)=y_t(x,0)=0"
"y(0,t)=y(l,t)=y_t(0,t)=y_t(l,t)=0"
then:
"b_n=0"
"a_n=\\frac{2}{l}\\int^l_0(4\\lambda x(l-x)\/l^2) sin(n\\pi x\/l)dx=-\\frac{8\\lambda}{l^3}\\frac{l^3(\\pi nsin(\\pi n)+2cos(\\pi n)-2)}{\\pi^3n^3}="
"=-\\frac{8\\lambda(\\pi nsin(\\pi n)+2cos(\\pi n)-2)}{\\pi^3n^3}"
"y(x,t)=-\\sum\\frac{8\\lambda(\\pi nsin(\\pi n)+2cos(\\pi n)-2)}{\\pi^3n^3}sin(n\\pi x\/l)cos(\\lambda \\pi nt\/l)"
Comments
Leave a comment