1. Using the Frobenius method solve the following ODE:
x2y" + 4xy' + (x2 + 2)y = 0
2. Determine the first and second order partial derivatives for the function:
u(x,t) = Ce(1-n²π²)tsin(nπx)
3. Obtain the Fourier series for the following function:
0 -π < x < 0
f(x) =
sin x 0 < x < π
Let the solution of above differential equation be
"y=a_ox^m+a_1x^{m+1}+a_2x^{m+2}+......................+a_nx^{n+m}"
"\\dfrac{dy}{dx}=ma_ox^{m-1}+(m+1)a_1x^m+(m+2)a_2x^{m+1}+........................."
"\\dfrac{d^2y}{dx^2}=m(m-1)a_ox^{m-2}+(m+1)ma_1x^{m-1}+(m+2)(m+1)a_2x^{m}+.................."
"x^2\\dfrac{d^2y}{dx^2}+4x\\dfrac{dy}{dx}+(x^2+2)y=0"
"x^2[m(m-1)a_ox^{m-2}+(m+1)ma_1x^{m-1}+(m+2)(m+1)a_2x^{m}+..................]+4x[ma_ox^{m-1}+(m+1)a_1x^m+(m+2)a_2x^{m+1}+.........................]+(x^2+2)[a_ox^m+a_1x^{m+1}+a_2x^{m+2}+......................+a_nx^{n+m}]=0"
Equating the coefficient of lowest degree in x (which is xm) equal to zero
"m(m-1)a_o+4ma_o+2a_o=0"
"m^2+3m+2=0"
"m=-2,-1"
For further powers of x,
"x^{m+1}":
"m(m+1)a_1+4(m+1)a_1+2a_1=0"
"m^2+m+4m+4+2=0"
"m^2+5m+6=0"
"m=-2,-3"
Since the equation has three roots it cannot be solved by frobenius method
The given differential equation refers to Sturm-Liouville equation.
2.
"u(x,t) = Ce^{(1-n\u00b2\u03c0\u00b2)t}sin(n\u03c0x)"
"u_x=n\\pi Ce^{(1-n\u00b2\u03c0\u00b2)t}cos(n\u03c0x)"
"u_t= C(1-n\u00b2\u03c0\u00b2) e^{(1-n\u00b2\u03c0\u00b2)t}sin(n\u03c0x)"
"u_{xx}=-n^2\\pi^2 Ce^{(1-n\u00b2\u03c0\u00b2)t}sin(n\u03c0x)"
"u_{tt}= C(1-n\u00b2\u03c0\u00b2)^2 e^{(1-n\u00b2\u03c0\u00b2)t}sin(n\u03c0x)"
"u_{xt}= n\\pi C(1-n\u00b2\u03c0\u00b2) e^{(1-n\u00b2\u03c0\u00b2)t}cos(n\u03c0x)"
3.
"f(x)=a_0+\\displaystyle{\\sum_{n=1}^{\\infin}}a_ncos(n\\pi x\/L)+\\displaystyle{\\sum_{n=1}^{\\infin}}b_nsin(n\\pi x\/L)"
we have: "L=\\pi"
"a_0=\\frac{1}{2L}\\int^L_{-L}f(x)dx=\\frac{1}{2\\pi}\\int^{\\pi}_{0}sinxdx=\\frac{1}{\\pi}"
"a_n=\\frac{1}{L}\\int^L_{-L}f(x)cos(n\\pi x\/L)dx=\\frac{1}{\\pi}\\int^{\\pi}_{0}sinxcos(nx)dx="
"=\\frac{nsinxsin(nx)+cosxcos(nx)}{\\pi (n^2-1)}|^{\\pi}_0=-\\frac{cos(n\\pi)+1}{\\pi (n^2-1)}"
"b_n=\\frac{1}{L}\\int^L_{-L}f(x)sin(n\\pi x\/L)dx=\\frac{1}{\\pi}\\int^{\\pi}_{0}sinxsin(nx)dx="
"=\\frac{cosxsin(nx)-nsinxcos(nx)}{\\pi (n^2-1)}|^{\\pi}_0=0"
"f(x)=\\frac{1}{\\pi}-\\displaystyle{\\sum_{n=1}^{\\infin}}\\frac{cos(n\\pi)+1}{\\pi (n^2-1)}cos(n x)"
Comments
Leave a comment