(6xy+2y2−5)dx+(3x2+4xy−6)dy=0
M(x,y)=6xy+2y2−5
=>∂y∂M(x,y)=My=6x+4y
N(x,y)=3x2+4xy−6
=>∂x∂N(x,y)=Nx=6x+4y
Hence exact since My=Nx
There exist a function u(x,y) such that
∂x∂u(x,y)=M(x,y)=6xy+2y2−5
∂y∂u(x,y)=N(x,y)=3x2+4xy−6
Hence
u(x,y)=∫(6xy+2y2−5)dx+φ(y)
=3x2y+2xy2−5x+φ(y)Differentiating with respect to y, we substitute the function into the second equation:
∂y∂u(x,y)=3x2+4xy+φ′(y)
=N(x,y)=3x2+4xy−6Then
φ′(y)=−6Integrate
φ(y)=−∫6dy=−6y−C
u(x,y)=3x2y+2xy2−5x−6y−C
The general solution is
3x2y+2xy2−5x−6y=C
Comments