Question #270221

solve the ODE (3x2+4xy-6)dy+(6xy+2y2-5)=0


1
Expert's answer
2021-11-23T12:57:37-0500

 

(6xy+2y25)dx+(3x2+4xy6)dy=0(6xy+2y^2-5)dx +(3x^2+4xy-6) dy=0

 


M(x,y)=6xy+2y25M(x,y)=6xy+2y^2-5




=>M(x,y)y=My=6x+4y=> {\partial M(x,y)\over \partial y}=M_y=6x+4y


N(x,y)=3x2+4xy6N(x,y)=3x^2+4xy-6




=>N(x,y)x=Nx=6x+4y=> {\partial N(x,y)\over \partial x}=N_x=6x+4y

Hence exact since My=NxM_y=N_x


There exist a function u(x,y)u(x,y) such that


u(x,y)x=M(x,y)=6xy+2y25{\partial u(x,y) \over \partial x}=M(x,y)=6xy+2y^2-5




u(x,y)y=N(x,y)=3x2+4xy6{\partial u(x,y) \over \partial y}=N(x,y)=3x^2+4xy-6


Hence


u(x,y)=(6xy+2y25)dx+φ(y)u(x, y)=\int(6xy+2y^2-5)dx+\varphi(y)

=3x2y+2xy25x+φ(y)=3x^2y+2xy^2-5x+\varphi(y)

Differentiating with respect to y,y, we substitute the function into the second equation:


u(x,y)y=3x2+4xy+φ(y){\partial u(x,y) \over \partial y}=3x^2+4xy+\varphi'(y)

=N(x,y)=3x2+4xy6=N(x,y)=3x^2+4xy-6

Then


φ(y)=6\varphi'(y)=-6

Integrate


φ(y)=6dy=6yC\varphi(y)=-\int 6dy=-6y-C

u(x,y)=3x2y+2xy25x6yCu(x, y)=3x^2y+2xy^2-5x-6y-C

The general solution is

3x2y+2xy25x6y=C3x^2y+2xy^2-5x-6y=C

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS