Homogeneous differential equation
1. (xy^2)dx-(x^3+y^3)dy=0
2. (x^2+y^2)dx+xydy=0
3. (y^2-x^2)dx+2xydy=0
4. (3x+2y)dx-2xdy=0
1.
"(xy^2)y'-(x^3+y^3)=0"
"y'-\\dfrac{1}{x}y=x^2y^{-2}"
First order Bernoulli ODE
"u'=3y^2y'"
"\\dfrac{1}{3}u'-\\dfrac{1}{x}u=x^2"
"u'-\\dfrac{3}{x}u=3x^2"
Integration factor
"x^{-3}u'-\\dfrac{3}{x^4}u=\\dfrac{3}{x}""d(x^{-3}u)=\\dfrac{3}{x}dx"
Integrate
"x^{-3}u=\\ln x+C"
"y^3=3x^3\\ln x+Cx^3"
"y=x\\sqrt[3]{3\\ln x+C}"
2.
"x^2+y^2+xyy'=0"
"y'+\\dfrac{1}{x}y=-xy^{-1}"
First order Bernoulli ODE
"u'=2yy'"
"\\dfrac{1}{2}u'+\\dfrac{1}{x}u=-x"
"u'+\\dfrac{2}{x}u=-2x"
Integration factor
"x^2u'+2xu=-2x^3"
"d(x^2u)=-2x^3dx"
Integrate
"x^2u=-\\dfrac{1}{2}x^4+C"
"y^2=-\\dfrac{1}{2}x^2+\\dfrac{C}{x^2}"
3.
"y^2-x^2+2xyy'=0"
"y'+\\dfrac{1}{2x}y=\\dfrac{1}{2}xy^{-1}"
First order Bernoulli ODE
"u'=2yy'"
"\\dfrac{1}{2}u'+\\dfrac{1}{2x}u=\\dfrac{1}{2}x"
"u'+\\dfrac{1}{x}u=xy^{-1}"
Integration factor
"xu'+u=x^2"
"d(xu)=x^2dx"
Integrate
"xu=\\dfrac{1}{3}x^3+C"
"y^2=\\dfrac{1}{3}x^2+\\dfrac{C}{x}"
4.
"y'-\\dfrac{1}{x}y=\\dfrac{3}{2}"
Integration factor
"\\dfrac{1}{x}y'-\\dfrac{1}{x^2}y=\\dfrac{3}{2x}"
"d(\\dfrac{1}{x}y)=\\dfrac{3}{2x}dx"
Integrate
"\\dfrac{1}{x}y=\\dfrac{3}{2}\\ln x+C"
Comments
Leave a comment