1.
( x y 2 ) d y − ( x 3 + y 3 ) d x = 0 (xy^2)dy-(x^3+y^3)dx=0 ( x y 2 ) d y − ( x 3 + y 3 ) d x = 0
( x y 2 ) y ′ − ( x 3 + y 3 ) = 0 (xy^2)y'-(x^3+y^3)=0 ( x y 2 ) y ′ − ( x 3 + y 3 ) = 0
y ′ − 1 x y = x 2 y − 2 y'-\dfrac{1}{x}y=x^2y^{-2} y ′ − x 1 y = x 2 y − 2 First order Bernoulli ODE
u = y 1 − ( − 2 ) = y 3 u=y^{1-(-2)}=y^3 u = y 1 − ( − 2 ) = y 3
u ′ = 3 y 2 y ′ u'=3y^2y' u ′ = 3 y 2 y ′
1 3 u ′ − 1 x u = x 2 \dfrac{1}{3}u'-\dfrac{1}{x}u=x^2 3 1 u ′ − x 1 u = x 2
u ′ − 3 x u = 3 x 2 u'-\dfrac{3}{x}u=3x^2 u ′ − x 3 u = 3 x 2 Integration factor
μ ( x ) = e ∫ ( − 3 / x ) d x = x − 3 \mu(x)=e^{\int(-3/x)dx}=x^{-3} μ ( x ) = e ∫ ( − 3/ x ) d x = x − 3
x − 3 u ′ − 3 x 4 u = 3 x x^{-3}u'-\dfrac{3}{x^4}u=\dfrac{3}{x} x − 3 u ′ − x 4 3 u = x 3 d ( x − 3 u ) = 3 x d x d(x^{-3}u)=\dfrac{3}{x}dx d ( x − 3 u ) = x 3 d x Integrate
∫ d ( x − 3 u ) = ∫ 3 x d x \int d(x^{-3}u)=\int\dfrac{3}{x}dx ∫ d ( x − 3 u ) = ∫ x 3 d x
x − 3 u = ln x + C x^{-3}u=\ln x+C x − 3 u = ln x + C
y 3 = 3 x 3 ln x + C x 3 y^3=3x^3\ln x+Cx^3 y 3 = 3 x 3 ln x + C x 3
y = x 3 ln x + C 3 y=x\sqrt[3]{3\ln x+C} y = x 3 3 ln x + C
2.
( x 2 + y 2 ) d x + x y d y = 0 (x^2+y^2)dx+xydy=0 ( x 2 + y 2 ) d x + x y d y = 0
x 2 + y 2 + x y y ′ = 0 x^2+y^2+xyy'=0 x 2 + y 2 + x y y ′ = 0
y ′ + 1 x y = − x y − 1 y'+\dfrac{1}{x}y=-xy^{-1} y ′ + x 1 y = − x y − 1 First order Bernoulli ODE
u = y 1 − ( − 1 ) = y 2 u=y^{1-(-1)}=y^2 u = y 1 − ( − 1 ) = y 2
u ′ = 2 y y ′ u'=2yy' u ′ = 2 y y ′
1 2 u ′ + 1 x u = − x \dfrac{1}{2}u'+\dfrac{1}{x}u=-x 2 1 u ′ + x 1 u = − x
u ′ + 2 x u = − 2 x u'+\dfrac{2}{x}u=-2x u ′ + x 2 u = − 2 x Integration factor
μ ( x ) = e ∫ ( 2 / x ) d x = x 2 \mu(x)=e^{\int(2/x)dx}=x^2 μ ( x ) = e ∫ ( 2/ x ) d x = x 2
x 2 u ′ + 2 x u = − 2 x 3 x^2u'+2xu=-2x^3 x 2 u ′ + 2 xu = − 2 x 3
d ( x 2 u ) = − 2 x 3 d x d(x^2u)=-2x^3dx d ( x 2 u ) = − 2 x 3 d x Integrate
∫ d ( x 2 u ) = − ∫ 2 x 3 d x \int d(x^2u)=-\int2x^3dx ∫ d ( x 2 u ) = − ∫ 2 x 3 d x
x 2 u = − 1 2 x 4 + C x^2u=-\dfrac{1}{2}x^4+C x 2 u = − 2 1 x 4 + C
y 2 = − 1 2 x 2 + C x 2 y^2=-\dfrac{1}{2}x^2+\dfrac{C}{x^2} y 2 = − 2 1 x 2 + x 2 C
3.
( y 2 − x 2 ) d x + 2 x y d y = 0 (y^2-x^2)dx+2xydy=0 ( y 2 − x 2 ) d x + 2 x y d y = 0
y 2 − x 2 + 2 x y y ′ = 0 y^2-x^2+2xyy'=0 y 2 − x 2 + 2 x y y ′ = 0
y ′ + 1 2 x y = 1 2 x y − 1 y'+\dfrac{1}{2x}y=\dfrac{1}{2}xy^{-1} y ′ + 2 x 1 y = 2 1 x y − 1 First order Bernoulli ODE
u = y 1 − ( − 1 ) = y 2 u=y^{1-(-1)}=y^2 u = y 1 − ( − 1 ) = y 2
u ′ = 2 y y ′ u'=2yy' u ′ = 2 y y ′
1 2 u ′ + 1 2 x u = 1 2 x \dfrac{1}{2}u'+\dfrac{1}{2x}u=\dfrac{1}{2}x 2 1 u ′ + 2 x 1 u = 2 1 x
u ′ + 1 x u = x y − 1 u'+\dfrac{1}{x}u=xy^{-1} u ′ + x 1 u = x y − 1 Integration factor
μ ( x ) = e ∫ ( 1 / x ) d x = x \mu(x)=e^{\int(1/x)dx}=x μ ( x ) = e ∫ ( 1/ x ) d x = x
x u ′ + u = x 2 xu'+u=x^2 x u ′ + u = x 2
d ( x u ) = x 2 d x d(xu)=x^2dx d ( xu ) = x 2 d x Integrate
∫ d ( x u ) = ∫ x 2 d x \int d(xu)=\int x^2dx ∫ d ( xu ) = ∫ x 2 d x
x u = 1 3 x 3 + C xu=\dfrac{1}{3}x^3+C xu = 3 1 x 3 + C
y 2 = 1 3 x 2 + C x y^2=\dfrac{1}{3}x^2+\dfrac{C}{x} y 2 = 3 1 x 2 + x C
4.
( 3 x + 2 y ) d x − 2 x d y = 0 (3x+2y)dx-2xdy=0 ( 3 x + 2 y ) d x − 2 x d y = 0
y ′ − 1 x y = 3 2 y'-\dfrac{1}{x}y=\dfrac{3}{2} y ′ − x 1 y = 2 3
Integration factor
μ ( x ) = e − ∫ ( 1 / x ) d x = 1 x \mu(x)=e^{-\int(1/x)dx}=\dfrac{1}{x} μ ( x ) = e − ∫ ( 1/ x ) d x = x 1
1 x y ′ − 1 x 2 y = 3 2 x \dfrac{1}{x}y'-\dfrac{1}{x^2}y=\dfrac{3}{2x} x 1 y ′ − x 2 1 y = 2 x 3
d ( 1 x y ) = 3 2 x d x d(\dfrac{1}{x}y)=\dfrac{3}{2x}dx d ( x 1 y ) = 2 x 3 d x Integrate
∫ d ( 1 x y ) = ∫ 3 2 x d x \int d(\dfrac{1}{x}y)=\int\dfrac{3}{2x}dx ∫ d ( x 1 y ) = ∫ 2 x 3 d x
1 x y = 3 2 ln x + C \dfrac{1}{x}y=\dfrac{3}{2}\ln x+C x 1 y = 2 3 ln x + C
y = 3 2 x ln x + C x y=\dfrac{3}{2}x\ln x+Cx y = 2 3 x ln x + C x
Comments