1.
"3\\cdot10^{4}q'+\\dfrac{1}{5\\cdot10^{-6}}q=100"
"q'+\\dfrac{20}{3}q=\\dfrac{0.01}{3}"
"q'=-\\dfrac{20}{3}(q-0.0005)"
"\\dfrac{dq}{q-0.0005}=-\\dfrac{20}{3}dt"
Integrate
Given "q(0)=1\\ C"
"1=0.0005+c_1""c_1=0.9995"
"q(t)=0.0005+0.9995e^{-20t\/3}"
"=\\dfrac{19.99}{3}e^{-20t\/3}"
"i(0.03)=-\\dfrac{19.99}{3}e^{-20(0.03)\/3}=-5.455(A)"
"-5.455\\ A"
1. The second Newton's Law
Given "m=50(0.453592)\\ kg=22.6796\\ kg,"
"g=32.1740 \\ ft\/s^2"
"v'=-\\dfrac{k}{22.6796}(v-\\dfrac{729.6934504}{k})"
"\\dfrac{dv}{v-\\dfrac{729.6934504}{k}}=-\\dfrac{k}{22.6796}dt"
integrate
"v(0)=0=>c_1=-\\dfrac{729.6934504}{k}"
"v(t)=\\dfrac{729.6934504}{k}-\\dfrac{729.6934504}{k}e^{-kt\/22.6796}"
"v(t)\\leq200=>\\dfrac{729.6934504}{k}=200"
"k=3.648467252"
"v(t)=200-200e^{-0.16087t}"
"v(t)=-h'(t)"
"h(t)=-\\int v dt=-\\int(200-200e^{-0.16087t})dt"
"=-200t-\\dfrac{200}{0.16087}e^{-0.16087t}+c_2"
"h(0)=1000=-\\dfrac{200}{0.16087}+c_2=>c_2=2243.24"
"h(t)=-200t-1243.24e^{-0.16087t}+2243.24"
"h(t_1)=0=-200t_1-1243.24e^{-0.16087t_1}+2243.24"
Solve graphically
"9.965" sec
Comments
Leave a comment