a.) 2y′′′−7y′′+12y′+8y=0
b.) y"-2y'+5y=e^xsinx
c.) y′' + y = 2xsinx
a)
Auxiliary equation (or characteristic equation)
"2r^2(r+\\dfrac{1}{2})-8r(r+\\dfrac{1}{2})+16(r+\\dfrac{1}{2})=0"
"2(r+\\dfrac{1}{2})(r^2-4r+8)=0"
"2(r+\\dfrac{1}{2})((r-2)^2+4)=0"
"r_1=-\\dfrac{1}{2}, r_2=2-2i, r_3=2+2i"
The general solution of the homogeneous differential equation is
b)
The corresponding homogeneous differential equation is
Auxiliary equation (or characteristic equation)
"(r-1)^2=-4"
"r_1=1-2i, r_2=1+2i"
The general solution of the homogeneous differential equation is
Find the particular solution of the nonhomogeneous differential equation in form
"y_p'=Ae^x\\cos x-Ae^x\\sin x+Be^x\\sin x+Be^x\\cos x"
"y_p''=Ae^x\\cos x-2Ae^x\\sin x-Ae^x\\cos x"
"+Be^x\\sin x+2Be^x\\cos x-Be^x\\sin x"
Substitute
"+2Ae^x\\sin x-2Be^x\\sin x-2Be^x\\cos x"
"+5Ae^x\\cos x+5Be^x\\sin x=e^x\\sin x"
"3B=1"
"A=0"
The general solution of the nonhomogeneous differential equation is
c)
The corresponding homogeneous differential equation is
Auxiliary equation (or characteristic equation)
"r_1=i, r_2=i"
The general solution of the homogeneous differential equation is
Find the particular solution of the nonhomogeneous differential equation in form
"y_p'=-(Ax^2+Bx+C)\\sin x+(2Ax+B)\\cos x"
"+(Dx^2+Ex+F)\\cos x+(2Dx+E)\\sin x"
"y_p''=-(Ax^2+Bx+C)\\cos x-2(2Ax+B)\\sin x"
"+2A\\cos x-(Dx^2+Ex+F)\\sin x"
"+2(2Dx+E)\\cos x+2D\\sin x"
Substitute
"+2A\\cos x-(Dx^2+Ex+F)\\sin x"
"+2(2Dx+E)\\cos x+2D\\sin x"
"+(Ax^2+Bx+C)\\cos x+(Dx^2+Ex+F)\\sin x"
"=2x\\sin x"
"-2(2Ax+B)\\sin x+2A\\cos x"
"+2(2Dx+E)\\cos x+2D\\sin x=2x\\sin x"
"A=-\\dfrac{1}{2}"
"B=D=0"
"E=-A=\\dfrac{1}{2}"
"y_p=-\\dfrac{1}{2}x^2\\cos x+\\dfrac{1}{2}x\\sin x"
The general solution of the nonhomogeneous differential equation is
Comments
Leave a comment