write the ordinary differential equation (1+sin y)dx = (2ycosy-x(secy-tan y))dy
(1+sin y)dx = (2ycosy-x(secy+tan y))dy
=> "\\frac{dx}{dy} +x \\frac{secy+tany}{1+siny}= \\frac{2ycosy}{1+siny}"
=> "\\frac{dx}{dy} +x \\frac{(1+siny)}{cosy(1+siny)}= \\frac{2ycosy}{1+siny}"
=> "\\frac{dx}{dy} +x secy= \\frac{2ycosy}{1+siny}"
This is a linear differential equation
Integrating factor (I.F.) = "e^{\\int (secy )dy}= e^{ln(secy +tany)}"
= secy + tany = "\\frac{1+siny}{cosy}"
Multiplying both sides by I.F. we get
"\\frac{1+siny}{cosy}.\\frac{dx}{dy} +x \\frac{(secy+tany}{1+siny}.\\frac{1+siny}{cosy}= \\frac{2ycosy}{1+siny}.\\frac{1+siny}{cosy}"
=> d("x\\frac{1+siny}{cosy}" )= 2ydy
Integrating we get
"\\int d( x\\frac{1+siny}{cosy})= \\int2ydy+C"
=> "x\\frac{1+siny}{cosy}= y\u00b2 + C" , where "C" is integration constant.
This is the solution of the differential equation given.
Comments
Leave a comment