Find the integral surface of the equation x2p+y2q+z2=0 passing through z=1,x+y=xy
"\\frac{dx}{x^2}=\\frac{dy}{y^2}=\\frac{dz}{-z^2}"
"-1\/x=-1\/y+c_1"
"1\/z=-1\/y+c_2"
"F(c_1,c_2)=F(1\/y-1\/x,1\/z+1\/y)=0"
for z=1,x+y=xy :
"c_2=1+1\/y\\implies y=c"
"c_1=1\/y-1\/x=\\frac{x-y}{xy}=\\frac{x-y}{x+y}=\\frac{x-c}{x+c}"
Comments
Leave a comment