Find the integral surface of the equation x2p+y2q+z2=0 passing through z=1,x+y=xy
dxx2=dyy2=dz−z2\frac{dx}{x^2}=\frac{dy}{y^2}=\frac{dz}{-z^2}x2dx=y2dy=−z2dz
−1/x=−1/y+c1-1/x=-1/y+c_1−1/x=−1/y+c1
1/z=−1/y+c21/z=-1/y+c_21/z=−1/y+c2
F(c1,c2)=F(1/y−1/x,1/z+1/y)=0F(c_1,c_2)=F(1/y-1/x,1/z+1/y)=0F(c1,c2)=F(1/y−1/x,1/z+1/y)=0
for z=1,x+y=xy :
c2=1+1/y ⟹ y=cc_2=1+1/y\implies y=cc2=1+1/y⟹y=c
c1=1/y−1/x=x−yxy=x−yx+y=x−cx+cc_1=1/y-1/x=\frac{x-y}{xy}=\frac{x-y}{x+y}=\frac{x-c}{x+c}c1=1/y−1/x=xyx−y=x+yx−y=x+cx−c
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment