1.
integrating factor:
"\\mu(y)=y"
"xy^2+(x^2-3y)yy'=0"
"(xy^2)_y=((x^2-3y)y)_x=2xy"
this is exact equation
solution is
"f(x,y)=c"
"f(x,y)=\\int xy^2dx=x^2y^2\/2+g(y)"
"f_y(x,y)=(x^2y^2\/2+g(y))_y=xy^2+dg(y)\/dy"
"x^2y+dg(y)\/dy=y(x^2-3y)"
"dg(y)\/dy=-3y^2"
"g(y)=-y^3"
"f(x,y)=-y^3+x^2y^2\/2"
"y^3+x^2y^2\/2=c"
2.
"-2y'\/y^2+2\/y^2=2xe^{-2x}"
"v(x)=1\/y^2"
"v'+2v=2xe^{-2x}"
"\\mu(x)=e^{2x}"
"v'e^{2x}+2ve^{2x}=2x"
"\\frac{d}{dx}(ve^{2x})=2x"
"ve^{2x}=x^2+c"
"v=e^{-2x}(x^2+c)"
"y(x)=\\pm \\frac{e^x}{\\sqrt{x^2+c}}"
1.
for exponential growth:
"A=A_0e^{kt}"
"A_0=2025" in 1998
in 2009:
"A=A_0e^{11k}=3A_0"
"k=ln3\/11=0.1"
then population will be doubled:
"2A_0=A_0e^{0.1t}"
"t=ln2\/0.1=6.9" years - in 2004
population in the year 2012:
"A=2025e^{0.1\\cdot 14}=8211"
2.
by Newton's law of cooling:
"T-T_0=ce^{kt}"
Then:
"50-0=ce^0"
"c=50"
"30-0=50e^{5k}"
"k=ln(3\/5)\/5=-0.1"
reading after 10 seconds:
"T=50e^{-0.1\\cdot 10}=18.4\\degree C"
time for the thermometer reading to drop to 20 degrees Celsius:
"20=50e^{-0.1t}"
"t=-ln(2\/5)\/0.1=9.16" s
Comments
Leave a comment