solve dx/df=3x-4y, dy/dt=x-y
From the second equation we get:
"x = \\frac{{dy}}{{dt}} + y = y' + y \\Rightarrow \\frac{{dx}}{{dt}} = x' = y'' + y'"
Substitute the found values into the first equation:
"y'' + y' = 3\\left( {y' + y} \\right) - 4y \\Rightarrow y'' - 2y' + y = 0"
Characteristic equation:
"{k^2} - 2k + 1 = 0 \\Rightarrow {(k - 1)^2} = 0 \\Rightarrow {k_1} = {k_2} = 1"
Then
"y = {C_1}{e^t} + t{C_2}{e^t} \\Rightarrow y' = {C_1}{e^t} + {C_2}{e^t} + t{C_2}{e^t}\\Rightarrow \\\\ \\Rightarrow x = y' + y = {C_1}{e^t} + {C_2}{e^t} + t{C_2}{e^t} + {C_1}{e^t} + t{C_2}{e^t} = \\\\=2{C_1}{e^t} + 2t{C_2}{e^t} + {C_2}{e^t}"
Answer: "y = {C_1}{e^t} + t{C_2}{e^t},\\,x = 2{C_1}{e^t} + 2t{C_2}{e^t} + {C_2}{e^t}"
Comments
Leave a comment