Question #256783
(y^¹)^2= 1-y^2/1-x^2 ; y=1/2 when, x =1
1
Expert's answer
2021-10-26T16:50:56-0400

Let us solve the differential equation (y)2=1y21x2;(y')^2= \frac{1-y^2}{1-x^2} ; y=12y=\frac{1}{2} when x=1.x =1.

This equation is eqivalent to the set of equations y=1y21x2y'= \sqrt{\frac{1-y^2}{1-x^2}}y=1y21x2.y'= -\sqrt{\frac{1-y^2}{1-x^2}} . It follows that dy1y2=dx1x2\frac{ dy}{\sqrt{1-y^2} }= \frac{dx}{\sqrt{1-x^2}} or dy1y2=dx1x2\frac{ dy}{\sqrt{1-y^2} }= -\frac{dx}{\sqrt{1-x^2}}. Therefore, dy1y2=dx1x2\int\frac{ dy}{\sqrt{1-y^2} }= \int\frac{dx}{\sqrt{1-x^2}} or dy1y2=dx1x2,\int\frac{ dy}{\sqrt{1-y^2} }= -\int\frac{dx}{\sqrt{1-x^2}}, and hence arcsiny=arcsinx+C1\arcsin y=\arcsin x+C_1 or arcsiny=arcsinx+C2.\arcsin y=-\arcsin x+C_2. Since y=12y=\frac{1}{2} when x=1,x =1, we get that arcsin12=arcsin1+C1\arcsin \frac{1}2=\arcsin 1+C_1 or arcsin12=arcsin1+C2.\arcsin \frac{1}2=-\arcsin 1+C_2.

It follows that π6=π2+C1, π6=π2+C1,\frac{\pi}6=\frac{\pi}2+C_1,\ \frac{\pi}6=-\frac{\pi}2+C_1, and hence C1=π3, C2=2π3.C_1=-\frac{\pi}{3},\ C_2=\frac{2\pi}{3}.

We conclude that the solutions are the following:

arcsiny=arcsinxπ3, arcsiny=arcsinx+2π3.\arcsin y=\arcsin x-\frac{\pi}{3},\ \arcsin y=-\arcsin x+\frac{2\pi}{3}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS