Let us solve the differential equation "(y')^2= \\frac{1-y^2}{1-x^2} ;" "y=\\frac{1}{2}" when "x =1."
This equation is eqivalent to the set of equations "y'= \\sqrt{\\frac{1-y^2}{1-x^2}}", "y'= -\\sqrt{\\frac{1-y^2}{1-x^2}} ." It follows that "\\frac{ dy}{\\sqrt{1-y^2} }= \\frac{dx}{\\sqrt{1-x^2}}" or "\\frac{ dy}{\\sqrt{1-y^2} }= -\\frac{dx}{\\sqrt{1-x^2}}". Therefore, "\\int\\frac{ dy}{\\sqrt{1-y^2} }= \\int\\frac{dx}{\\sqrt{1-x^2}}" or "\\int\\frac{ dy}{\\sqrt{1-y^2} }= -\\int\\frac{dx}{\\sqrt{1-x^2}}," and hence "\\arcsin y=\\arcsin x+C_1" or "\\arcsin y=-\\arcsin x+C_2." Since "y=\\frac{1}{2}" when "x =1," we get that "\\arcsin \\frac{1}2=\\arcsin 1+C_1" or "\\arcsin \\frac{1}2=-\\arcsin 1+C_2."
It follows that "\\frac{\\pi}6=\\frac{\\pi}2+C_1,\\ \\frac{\\pi}6=-\\frac{\\pi}2+C_1," and hence "C_1=-\\frac{\\pi}{3},\\ C_2=\\frac{2\\pi}{3}."
We conclude that the solutions are the following:
"\\arcsin y=\\arcsin x-\\frac{\\pi}{3},\\ \\arcsin y=-\\arcsin x+\\frac{2\\pi}{3}."
Comments
Leave a comment