y''+2y'+2y=2 y(0)=0,y'(0)=1
Characteristic equation
"{k^2} + 2k + 2 = 0\\\\\nD = 4 - 8 = - 4\\\\\n{k_1} = \\frac{{ - 2 - 2i}}{2} = - 1 - i\\\\\n{k_2} = - 1 + i"
We obtain the general solution of the homogeneous equation
"{y_0} = {e^{ - x}}\\left( {{C_1}\\cos x + {C_2}\\sin x} \\right)"
We will seek a particular solution of the equation in the form
"Y = A \\Rightarrow Y' = Y'' = 0"
then
"0 + 0 + 2A = 2 \\Rightarrow A = 1"
Then
"Y = A,\\,\\,y = {y_0} + Y = {e^{ - x}}\\left( {{C_1}\\cos x + {C_2}\\sin x} \\right) + 1"
"y' = - {e^{ - x}}\\left( {{C_1}\\cos x + {C_2}\\sin x} \\right) + {e^{ - x}}\\left( { - {C_1}\\sin x + {C_2}\\cos x} \\right)"
"y(0) = 0,\\,y'(0) = 1 \\Rightarrow \\left\\{ {\\begin{matrix}\n{{C_1} +1= 0}\\\\\n{ - {C_1} + {C_2} = 1}\n\\end{matrix}} \\right. \\Rightarrow {C_1} = -1,\\,\\,{C_2} = 0"
Answer: "y = - {e^{ - x}}\\cos x + 1"
Comments
Leave a comment