Verify that the given functions form the fundamental set of solution of the differential equation on the given indicated interval.
2x^2y" +5xy' + y = x^2-x
y = C1x^-1/2 + C2x^-1 + 15x^2-1/6x, (-0, infinity)
"y = C_1x^{-1\/2} + C_2x^{-1} +\\dfrac{1}{15}x^2-\\dfrac{1}{6}x, (0, \\infin)"
"y'=-\\dfrac{1}{2}C_1x^{-3\/2} - C_2x^{-2} +\\dfrac{2}{15}x-\\dfrac{1}{6}"
"y''=\\dfrac{3}{4}C_1x^{-5\/2} +2 C_2x^{-3} +\\dfrac{2}{15}"
"2x^2y'' +5xy' + y = x^2-x"
"2x^2(\\dfrac{3}{4}C_1x^{-5\/2} +2 C_2x^{-3} +\\dfrac{2}{15})"
"+5x(-\\dfrac{1}{2}C_1x^{-3\/2} - C_2x^{-2} +\\dfrac{2}{15}x-\\dfrac{1}{6})"
"+C_1x^{-1\/2} + C_2x^{-1} +\\dfrac{1}{15}x^2-\\dfrac{1}{6}x"
"=\\dfrac{3}{2}C_1x^{-1\/2} +4 C_2x^{-1} +\\dfrac{4}{15}x^2"
"-\\dfrac{5}{2}C_1x^{-1\/2} -5 C_2x^{-1} +\\dfrac{2}{3}x^2-\\dfrac{5}{6}x"
"+C_1x^{-1\/2} + C_2x^{-1} +\\dfrac{1}{15}x^2-\\dfrac{1}{6}x"
"=x^2-x, True\\ x\\in(0, \\infin)"
Comments
Leave a comment