Find the complete integral of the differential equation
p2- y3q = x2 -y2.
"\\frac{dx}{-f_p}=\\frac{dy}{-f_q}=\\frac{dz}{-pf_p-qf_q}=\\frac{dp}{f_x+pf_z}=\\frac{dq}{f_y+qf_z}"
"\\frac{dx}{-2p}=\\frac{dy}{y^3}=\\frac{dz}{2p^2-y^3q}=\\frac{dp}{-2x}=\\frac{dq}{2y}"
"2xdx=2pdp"
"p^2=x^2+c"
"y=c_1"
"2ydy\/y^3=dq"
"q=-2\/y+c'"
"\\frac{d(\\sqrt{x^2+c})}{-2x}=\\frac{d(-2\/y+c')}{2y}"
case 1:
"-\\frac{dx}{2\\sqrt{x^2+c}}=\\frac{dy}{y^3}"
"-1\/2y^2=-ln(\\sqrt{x^2+c}+x)\/2+c'_2"
"c_2=y^2-ln(\\sqrt{x^2+c}+x)"
"F(c_1,c_2)=F(y,y^2-ln(\\sqrt{x^2+c}+x))=0"
case 2:
"\\frac{-d(\\sqrt{x^2+c})}{-2x}=\\frac{d(-2\/y+c')}{2y}"
"-1\/2y^2=ln(\\sqrt{x^2+c}+x)\/2+c'_2"
"c_2=y^2+ln(\\sqrt{x^2+c}+x)"
"F(c_1,c_2)=F(y,y^2+ln(\\sqrt{x^2+c}+x))=0"
Comments
Leave a comment