verify that the indicated function is a solution of the given differential equation. Assume an appropriate interval I of denition of each solution. 25. x dy dx 2 3xy 5 1; y 5 e3x # x 1 e23t t d
"y=e^{3x}\\displaystyle\\int_{1}^{x}\\dfrac{e^{-3t}}{t}dt"
"\\dfrac{dy}{dx}=\\dfrac{d}{dx}\\bigg(e^{3x}\\displaystyle\\int_{1}^{x}\\dfrac{e^{-3t}}{t}dt\\bigg)"
"=3e^{3x}\\displaystyle\\int_{1}^{x}\\dfrac{e^{-3t}}{t}dt+e^{3x}\\dfrac{e^{-3x}}{x}"
"=3e^{3x}\\displaystyle\\int_{1}^{x}\\dfrac{e^{-3t}}{t}dt+\\dfrac{1}{x}"
Substitute
"x\\bigg(3e^{3x}\\displaystyle\\int_{1}^{x}\\dfrac{e^{-3t}}{t}dt+\\dfrac{1}{x}\\bigg)"
"-3x\\bigg(e^{3x}\\displaystyle\\int_{1}^{x}\\dfrac{e^{-3t}}{t}dt\\bigg)=1"
"3xe^{3x}\\displaystyle\\int_{1}^{x}\\dfrac{e^{-3t}}{t}dt+1-3xe^{3x}\\displaystyle\\int_{1}^{x}\\dfrac{e^{-3t}}{t}dt=1"
"1=1, True"
Therefore the indicated function is a solution of the given differential equation.
Comments
Leave a comment