Find the general solution of the following
2x2y''-xy'+(x-5)y=0
Find the general solution of the following
2x2y''-xy'+(x-5)y=0
Solution:
The general solution of the equation
"x^2y''+axy'+(bx^n+c)y=0", "n\\neq 0"
is:
"y=x^\\frac{1-a}{2}[C_1J_\\nu (\\frac2n\\sqrt{b}x^\\frac n2)+C_2Y_\\nu (\\frac2n\\sqrt{b}x^\\frac n2)]" ,
where "\\nu=\\frac 1n\\sqrt{(1-a)^2-4c}" , "C_1" and "C_2" are arbitrary constants;
"J_\\nu (z)" and "Y_\\nu(z)" are the Bessel functions of the first and second kind.
References :
Kamke, E., Differentialgleichungen: Losungsmethoden und Losungen, I, Gewohnliche Differentialgleichungen, B. G. Teubner, Leipzig, 1977.
Polyanin, A. D. and Zaitsev, V. F., Handbook of Exact Solutions for Ordinary Differential Equations, 2nd Edition, Chapman & Hall/CRC, Boca Raton, 2003.
In our case:
"2x^2y''-xy'+(x-5)y=0"
divided by 2:
"x^2y''-\\frac12xy'+(\\frac12x-\\frac52)y=0"
"a=-\\frac12" , "b=\\frac12" , "c=-\\frac52" , "n=1", "\\nu=\\sqrt{\\frac94+10}=\\frac72" .
Solution:
"y=x^\\frac{3}{4}[C_1J_\\frac72 (\\sqrt{\\frac{x}{2}})+C_2Y_\\frac72 (\\sqrt{\\frac{x}{2}})]" ,
where "C_1" and "C_2" are arbitrary constants;
"J_\\nu (z)" and "Y_\\nu(z)" are the Bessel functions of the first and second kind.
Answer: "y=x^\\frac{3}{4}[C_1J_\\frac72 (\\sqrt{\\frac{x}{2}})+C_2Y_\\frac72 (\\sqrt{\\frac{x}{2}})]" .
Comments
Leave a comment