prove that the substitution u=y1-n reduces the equation dy/dx+p(x)y=Q(x)yn into a linear equation . hence solve the equation dy/dx+y/x=x/y3
Part 1: proving"Divide\\ the\\ equation\\ \\frac{dy}{dx}+P(x)y=Q(x)y^{n}\\ by\\ y^{n}\\newline \\frac{1}{y^{n}}\\frac{dy}{dx}+P(x)y^{1-n}=Q(x)\\newline set\\ u=y^{1-n},\\ \\frac{du}{dx}=(1-n)y^{1-n-1}\\frac{dy}{dx}\\newline \\frac{1}{1-n}\\frac{du}{dx}=\\frac{1}{y^{n}}\\frac{dy}{dx}\\newline substitute\\ to\\ get\\ \\frac{1}{1-n}\\frac{du}{dx}+P(x)u=Q(x)\\newline \\frac{du}{dx}+(1-n)P(x)u=(1-n)Q(x)\\newline which\\ is\\ linear\\ in\\ x\\newline Part 2\\newline \\frac{dy}{dx}+P(x)y=Q(x)y^{n}\\newline \\frac{dy}{dx}+\\frac{y}{x}=\\frac{x}{y^{3}}\\newline n=-3,\\ P(x)=\\frac{1}{x},\\ Q(x)=x\\newline \\frac{du}{dx}+(1-n)uP(x)=(1-n)Q(x)\\newline \\frac{du}{dx}+\\frac{4u}{x}=4x\\newline let\\ u=vw\\newline \\frac{du}{dx}=V\\frac{dw}{dx}+W\\frac{dv}{dx}\\newline substitute\\newline V\\frac{dw}{dx}+W\\frac{dv}{dx}+4\\frac{VW}{x}=4x\\newline V\\frac{dw}{dx}+W(\\frac{dv}{dx}+\\frac{4v}{x})=4x\\newline take\\ part\\ in\\ ()\\ equals\\ 0\\ and\\ separate\\ variables\\newline \\frac{dv}{dx}+\\frac{4v}{x}=0\\newline \\frac{dv}{v}=\\frac{-4dx}{x}\\newline \\int \\frac{dv}{v}=-\\int \\frac{4dx}{x}\\newline ln (v)= ln(k)-4ln(x)\\newline v=kx^{-4}\\newline substitute\\ v\\ back\\newline kx^{-4}\\frac{dw}{dx}=4x\\newline kx^{-4}dw=4xdx\\newline kdw=4x^{9}dx\\newline \\int kdw=\\int 4x^{9}dx\\newline kw=\\frac{4}{10}x^{10}+C\\newline w=\\frac{1}{k}(\\frac{4}{10}x^{10}+C)\\newline substitute\\ u=vw\\ to\\ find\\ original\\ equation\\newline u=VW=\\frac{kx^{-4}}{k}(\\frac{4}{10}x^{10}+C)\\newline =x^{-4}(\\frac{4}{10}x^{10}+C)\\newline \\frac{4}{10}x^{6}+Cx^{-4}\\newline u=y^{1-n}=y^{4}\\newline We\\ then\\ substitute\\ back\\ y=u^{\\frac{1}{4}}\\newline y=(\\frac{4}{10}x^{6}+Cx^{-4})^{\\frac{1}{4}}"
Comments
Leave a comment