Question #221980
d^2 / dx^2 - 2dy / dx= 3e^x sinx by method of undetermined coefficients
1
Expert's answer
2021-08-03T07:08:40-0400

d2y/dx22dy/dx=3exsinxd^2y / dx^2 - 2dy / dx= 3e^x\sin x

Find the eigenvectors of the differential operator d2/dx22d/dxd^2/dx^2 - 2d/dx. Since this operator is linear and with constant coefficients, the eigenvectors may be found of the following form: eλxe^{\lambda x}.

(d2/dx22d/dx)eλx=(λ22λ)eλx(d^2/dx^2 - 2d/dx)e^{\lambda x}=(\lambda^2-2\lambda)e^{\lambda x}

Therefore, the null-space o f this operator is generated by the functions eλxe^{\lambda x} with such λ\lambda, that λ22λ=0\lambda^2-2\lambda=0, i.e. λ1=0\lambda_1=0 and λ2=2\lambda_2=2.


The general solution of linear ODE is the sum of a partial solution and an arbitrary function from the null space of the differential operator, that is, the function ae2x+bae^{2x}+b with any a,b.


Since 3exsinx3e^x\sin x has neither the form p1(x)eλ1xp_1(x)e^{\lambda_1x}, nor the form p2(x)eλ2xp_2(x)e^{\lambda_2x} with p1(x),p2(x)p_1(x),\,p_2(x) polynomials on x, but has the form eλxsin(ax)e^{\lambda x}\sin (ax), we can seek a partial solution to be of the form

y=ex(a1sinx+a2cosx)y=e^x(a_1\sin x+a_2\cos x)

Let's differentiate:

y=ex(a1sinx+a2cosx+a1cosxa2sinx)=ex((a1a2)sinx+(a1+a2)cosx)y'=e^x(a_1\sin x+a_2\cos x+a_1\cos x-a_2\sin x)=e^x((a_1-a_2)\sin x+(a_1+a_2)\cos x)

y=ex(((a1a2)(a1+a2))sinx+((a1a2)+(a1+a2))cosx)=y''=e^x(((a_1-a_2)-(a_1+a_2))\sin x+((a_1-a_2)+(a_1+a_2))\cos x)=

=ex(2a2sinx+2a1cosx)=e^x(-2a_2\sin x+2a_1\cos x)

Hence

y2y=ex(2a2sinx+2a1cosx)2ex((a1a2)sinx+(a1+a2)cosx)=y''-2y'=e^x(-2a_2\sin x+2a_1\cos x)-2e^x((a_1-a_2)\sin x+(a_1+a_2)\cos x)=

=ex(2a1sinx2a2cosx)=3exsinx=e^x(-2a_1\sin x-2a_2\cos x)=3e^x\sin x

Therefore, a1=3/2a_1=-3/2, a2=0a_2=0.


Answer. y=32exsinx+ae2x+by=-\frac{3}{2}e^x\sin x+ae^{2x}+b


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS